Combining Texts

All the ideas for 'fragments/reports', 'fragments/reports' and 'Set Theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
We don't have time for infinite quantity, but we do for infinite divisibility, because time is also divisible [Aristotle on Zeno of Elea]
     Full Idea: Although it is impossible to make contact in a finite time with things that are infinite in quantity, it is possible to do so with things that are infinitely divisible, since the time itself is also infinite in this way.
     From: comment on Zeno (Elea) (fragments/reports [c.450 BCE], A25) by Aristotle - Physics 233a21
The fast runner must always reach the point from which the slower runner started [Zeno of Elea, by Aristotle]
     Full Idea: Zeno's so-called 'Achilles' claims that the slowest runner will never be caught by the fastest runner, because the one behind has first to reach the point from which the one in front started, and so the slower one is bound always to be in front.
     From: report of Zeno (Elea) (fragments/reports [c.450 BCE]) by Aristotle - Physics 239b14
     A reaction: The point is that the slower runner will always have moved on when the faster runner catches up with the starting point. We must understand how humble the early Greeks felt when they confronted arguments like this. It was like a divine revelation.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Zeno is wrong that one grain of millet makes a sound; why should one grain achieve what the whole bushel does? [Aristotle on Zeno of Elea]
     Full Idea: Zeno is wrong in arguing that the tiniest fragment of millet makes a sound; there is no reason why the fragment should be able to move in any amount of time the air which the whole bushel moved as it fell.
     From: comment on Zeno (Elea) (fragments/reports [c.450 BCE], A29) by Aristotle - Physics 250a16
5. Theory of Logic / L. Paradox / 7. Paradoxes of Time
Zeno's arrow paradox depends on the assumption that time is composed of nows [Aristotle on Zeno of Elea]
     Full Idea: Zeno's third argument claims that a moving arrow is still. Here the conclusion depends on assuming that time is composed of nows; if this assumption is not granted, the argument fails.
     From: comment on Zeno (Elea) (fragments/reports [c.450 BCE], A27?) by Aristotle - Physics 239b5
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
26. Natural Theory / A. Speculations on Nature / 1. Nature
If there are many things they must have a finite number, but there must be endless things between them [Zeno of Elea]
     Full Idea: It things are many, they can't be more or less than they are, so they must be finite, but also there must be endless things between each thing, so they must be infinite.
     From: Zeno (Elea) (fragments/reports [c.450 BCE], B3), quoted by Simplicius - On Aristotle's 'Physics' 140.29
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
That which moves, moves neither in the place in which it is, nor in that in which it is not [Zeno of Elea]
     Full Idea: That which moves, moves neither in the place in which it is, nor in that in which it is not.
     From: Zeno (Elea) (fragments/reports [c.450 BCE], B4), quoted by (who?) - where?
27. Natural Reality / C. Space / 5. Relational Space
If everything is in a place, what is the place in? Place doesn't exist [Zeno of Elea, by Simplicius]
     Full Idea: If there is a place it will be in something, because everything that exists is in something. But what is in something is in a place. Therefore the place will be in a place, and so on ad infinitum. Therefore, there is no such thing as place.
     From: report of Zeno (Elea) (fragments/reports [c.450 BCE], B3) by Simplicius - On Aristotle's 'Physics' 9.562.3
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.