Combining Texts

All the ideas for 'teaching', 'Putnam's Paradox' and 'Sets and Numbers'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
Speak the truth, for this alone deifies man [Pythagoras, by Porphyry]
     Full Idea: Pythagoras advised above all things to speak the truth, for this alone deifies man.
     From: report of Pythagoras (reports [c.530 BCE]) by Porphyry - Life of Pythagoras §41
     A reaction: Idea 4421 (of Nietzsche) stands in contrast to this. I am not quite sure why speaking the truth has such a high value. I am inclined to a minimalist view, which is just that philosophy is an attempt to speak the truth, as fishermen try to catch fish.
1. Philosophy / B. History of Ideas / 2. Ancient Thought
Pythagoras discovered the numerical relation of sounds on a string [Pythagoras, by Diog. Laertius]
     Full Idea: Pythagoras discovered the numerical relation of sounds on a string.
     From: report of Pythagoras (reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.1.11
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
     Full Idea: The master science can be thought of as the theory of sets with the entire range of physical objects as ur-elements.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: This sounds like Quine's view, since we have to add sets to our naturalistic ontology of objects. It seems to involve unrestricted mereology to create normal objects.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
A consistent theory just needs one model; isomorphic versions will do too, and large domains provide those [Lewis]
     Full Idea: A consistent theory is, by definition, one satisfied by some model; an isomorphic image of a model satisfies the same theories as the original model; to provide the making of an isomorphic image of any given model, a domain need only be large enough.
     From: David Lewis (Putnam's Paradox [1984], 'Why Model')
     A reaction: This is laying out the ground for Putnam's model theory argument in favour of anti-realism. If you are chasing the one true model of reality, then formal model theory doesn't seem to offer much encouragement.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
For Pythagoreans 'one' is not a number, but the foundation of numbers [Pythagoras, by Watson]
     Full Idea: For Pythagoreans, one, 1, is not a true number but the 'essence' of number, out of which the number system emerges.
     From: report of Pythagoras (reports [c.530 BCE], Ch.8) by Peter Watson - Ideas Ch.8
     A reaction: I think this is right! Counting and numbers only arise once the concept of individuality and identity have arisen. Counting to one is no more than observing the law of identity. 'Two' is the big adventure.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
     Full Idea: If you wonder why multiplication is commutative, you could prove it from the Peano postulates, but the proof offers little towards an answer. In set theory Cartesian products match 1-1, and n.m dots when turned on its side has m.n dots, which explains it.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: 'Turning on its side' sounds more fundamental than formal set theory. I'm a fan of explanation as taking you to the heart of the problem. I suspect the world, rather than set theory, explains the commutativity.
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
     Full Idea: The standard account of the relationship between numbers and sets is that numbers simply are certain sets. This has the advantage of ontological economy, and allows numbers to be brought within the epistemology of sets.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Maddy votes for numbers being properties of sets, rather than the sets themselves. See Yourgrau's critique.
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
     Full Idea: I propose that ...numbers are properties of sets, analogous, for example, to lengths, which are properties of physical objects.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Are lengths properties of physical objects? A hole in the ground can have a length. A gap can have a length. Pure space seems to contain lengths. A set seems much more abstract than its members.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Sets exist where their elements are, but numbers are more like universals [Maddy]
     Full Idea: A set of things is located where the aggregate of those things is located, ...but a number is simultaneously located at many different places (10 in my hand, and a baseball team) ...so numbers seem more like universals than particulars.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: My gut feeling is that Maddy's master idea (of naturalising sets by building them from ur-elements of natural objects) won't work. Sets can work fine in total abstraction from nature.
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
     Full Idea: I am not suggesting a reduction of number theory to set theory ...There are only sets with number properties; number theory is part of the theory of finite sets.
     From: Penelope Maddy (Sets and Numbers [1981], V)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
     Full Idea: The popular challenges to platonism in philosophy of mathematics are epistemological (how are we able to interact with these objects in appropriate ways) and ontological (if numbers are sets, which sets are they).
     From: Penelope Maddy (Sets and Numbers [1981], I)
     A reaction: These objections refer to Benacerraf's two famous papers - 1965 for the ontology, and 1973 for the epistemology. Though he relied too much on causal accounts of knowledge in 1973, I'm with him all the way.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
     Full Idea: Number words are not like normal adjectives. For example, number words don't occur in 'is (are)...' contexts except artificially, and they must appear before all other adjectives, and so on.
     From: Penelope Maddy (Sets and Numbers [1981], IV)
     A reaction: [She is citing Benacerraf's arguments]
7. Existence / D. Theories of Reality / 4. Anti-realism
Anti-realists see the world as imaginary, or lacking joints, or beyond reference, or beyond truth [Lewis]
     Full Idea: Anti-realists say the only world is imaginary, or only has the parts or classes or relations we divide it into, or doubt that reference to the world is possible, or doubt that our interpretations can achieve truth.
     From: David Lewis (Putnam's Paradox [1984], 'Why Anti-R')
     A reaction: [compression of a paragraph on anti-realism] Lewis is a thoroughgoing realist. A nice example of the rhetorical device of ridiculing an opponent by suggesting that they don't even know what they themselves believe.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
A gerrymandered mereological sum can be a mess, but still have natural joints [Lewis]
     Full Idea: The mereological sum of the coffee in my cup, the ink in this sentence, a nearby sparrow, and my left shoe is a miscellaneous mess of an object, yet its boundaries are by no means unrelated to the joints of nature.
     From: David Lewis (Putnam's Paradox [1984], 'What Might')
     A reaction: In that case they do, but if there are no atoms at the root of physics then presumably their could also be thoroughly jointless assemblages, involving probability distributions etc. Even random scattered atoms seem rather short of joints.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Causal theories of reference make errors in reference easy [Lewis]
     Full Idea: Whatever happens in special cases, causal theories usually make it easy to be wrong about the thing we refer to.
     From: David Lewis (Putnam's Paradox [1984], 'What Is')
     A reaction: I suppose the point of this is that there are no checks and balances to keep reference in focus, but just a requirement to keep connected to an increasingly attenuated causal chain.
19. Language / B. Reference / 4. Descriptive Reference / b. Reference by description
Descriptive theories remain part of the theory of reference (with seven mild modifications) [Lewis]
     Full Idea: Description theories of reference are supposed to have been well and truly refuted. I think not: ..it is still tenable with my seven points, and part of the truth of reference [7: rigidity, egocentric, tokens, causal, imperfect, indeterminate, families].
     From: David Lewis (Putnam's Paradox [1984], 'Glob Desc')
     A reaction: (The bit at the end refers to his seven points, on p.59). He calls his basic proposal 'causal descriptivism', incorporating his seven slight modifications of traditional descriptivism about reference.
22. Metaethics / B. Value / 2. Values / d. Health
Pythagoras taught that virtue is harmony, and health, and universal good, and God [Pythagoras, by Diog. Laertius]
     Full Idea: Pythagoras taught that virtue is harmony, and health, and universal good, and God.
     From: report of Pythagoras (reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.1.19
     A reaction: I like the link with health, because I consider that a bridge over the supposed fact-value gap. Very Pythagorean to think that virtue is harmony. Plato liked that thought.
23. Ethics / C. Virtue Theory / 3. Virtues / c. Justice
For Pythagoreans, justice is simply treating all people the same [Pythagoras, by Aristotle]
     Full Idea: Some even think that what is just is simple reciprocity, as the Pythagoreans maintained, because they defined justice simply as having done to one what one has done to another.
     From: report of Pythagoras (reports [c.530 BCE], 28) by Aristotle - Nicomachean Ethics 1132b22
     A reaction: One wonders what Pythagoreans made of slavery. Aristotle argues that officials, for example, have superior rights. The Pythagorean idea makes fairness the central aspect of justice, and that must at least be partly right.
26. Natural Theory / A. Speculations on Nature / 4. Mathematical Nature
When musical harmony and rhythm were discovered, similar features were seen in bodily movement [Pythagoras, by Plato]
     Full Idea: When our predecessors discovered musical scales, they also discovered similar features in bodily movement, which should also be measured numerically, and called 'tempos' and 'measures'.
     From: report of Pythagoras (reports [c.530 BCE]) by Plato - Philebus 17d
Pythagoreans define timeliness, justice and marriage in terms of numbers [Pythagoras, by Aristotle]
     Full Idea: The Pythagoreans offered definitions of a limited range of things on the basis of numbers; examples are timeliness, justice and marriage.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 1078b
Pythagoreans think mathematical principles are the principles of all of nature [Pythagoras, by Aristotle]
     Full Idea: The Pythagoreans thought that the principles of mathematical entities were the principles of all entities.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 985b
Pythagoreans say things imitate numbers, but Plato says things participate in numbers [Pythagoras, by Aristotle]
     Full Idea: Pythagoreans said that entities existed by imitation of the numbers, whereas Plato said that it was by participation.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 987b
For Pythagoreans the entire universe is made of numbers [Pythagoras, by Aristotle]
     Full Idea: For Pythagoreans the entire universe is constructed of numbers.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 1080b
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The modern idea of an immortal soul was largely created by Pythagoras [Pythagoras, by Watson]
     Full Idea: The modern concept of the immortal soul is a Greek idea, which owes much to Pythagoras.
     From: report of Pythagoras (reports [c.530 BCE]) by Peter Watson - Ideas Ch.5
     A reaction: You can see why it caught on - it is a very appealing idea. Watson connects the 'modern' view with the ideas of heaven and hell. Obviously the idea of an afterlife goes a long way back (judging from the contents of ancient graves).