Combining Texts

All the ideas for 'teaching', 'What Required for Foundation for Maths?' and 'The Semantic Conception of Truth'

unexpand these ideas     |    start again     |     specify just one area for these texts


66 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
Speak the truth, for this alone deifies man [Pythagoras, by Porphyry]
     Full Idea: Pythagoras advised above all things to speak the truth, for this alone deifies man.
     From: report of Pythagoras (reports [c.530 BCE]) by Porphyry - Life of Pythagoras §41
     A reaction: Idea 4421 (of Nietzsche) stands in contrast to this. I am not quite sure why speaking the truth has such a high value. I am inclined to a minimalist view, which is just that philosophy is an attempt to speak the truth, as fishermen try to catch fish.
1. Philosophy / B. History of Ideas / 2. Ancient Thought
Pythagoras discovered the numerical relation of sounds on a string [Pythagoras, by Diog. Laertius]
     Full Idea: Pythagoras discovered the numerical relation of sounds on a string.
     From: report of Pythagoras (reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.1.11
1. Philosophy / E. Nature of Metaphysics / 5. Metaphysics beyond Science
Some say metaphysics is a highly generalised empirical study of objects [Tarski]
     Full Idea: For some people metaphysics is a general theory of objects (ontology) - a discipline which is to be developed in a purely empirical way, and which differs from other empirical disciplines in its generality.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 19)
     A reaction: Tarski says some people despise it, but for him such metaphysics is 'not objectionable'. I subscribe to this view, but the empirical aspect is very remote, because it's too general for detail observation or experiment. Generality is the key to philosophy.
1. Philosophy / F. Analytic Philosophy / 1. Nature of Analysis
Disputes that fail to use precise scientific terminology are all meaningless [Tarski]
     Full Idea: Disputes like the vague one about 'the right conception of truth' occur in all domains where, instead of exact, scientific terminology, common language with its vagueness and ambiguity is used; and they are always meaningless, and therefore in vain.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 14)
     A reaction: Taski taught a large number of famous philosophers in California in the 1950s, and this approach has had a huge influence. Recently there has been a bit of a rebellion. E.g. Kit Fine doesn't think it can all be done in formal languages.
2. Reason / D. Definition / 1. Definitions
For a definition we need the words or concepts used, the rules, and the structure of the language [Tarski]
     Full Idea: We must specify the words or concepts which we wish to use in defining the notion of truth; and we must also give the formal rules to which the definition should conform. More generally, we must describe the formal structure of the language.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 01)
     A reaction: This, of course, is a highly formal view of how definition should be achieved, offered in anticipation of one of the most famous definitions in logic (of truth, by Tarski). Normally we assume English and classical logic.
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
3. Truth / A. Truth Problems / 2. Defining Truth
A definition of truth should be materially adequate and formally correct [Tarski]
     Full Idea: The main problem of the notion of truth is to give a satisfactory definition which is materially adequate and formally correct.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 01)
     A reaction: That is, I take it, that it covers all cases of being true and failing to be true, and it fits in with the logic. The logic is explicitly classical logic, and he is not aiming to give the 'nature' or natural language understanding of the concept.
Definitions of truth should not introduce a new version of the concept, but capture the old one [Tarski]
     Full Idea: The desired definition of truth does not aim to specify the meaning of a familiar word used to denote a novel notion; on the contrary, it aims to catch hold of the actual meaning of an old notion.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 01)
     A reaction: Tarski refers back to Aristotle for an account of the 'old notion'. To many the definition of Tarski looks very weird, so it is important to see that he is trying to capture the original concept.
A rigorous definition of truth is only possible in an exactly specified language [Tarski]
     Full Idea: The problem of the definition of truth obtains a precise meaning and can be solved in a rigorous way only for those languages whose structure has been exactly specified.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 06)
     A reaction: Taski has just stated how to exactly specify the structure of a language. He says definition can only be vague and approximate for natural languages. (The usual criticism of the correspondence theory is its vagueness).
We may eventually need to split the word 'true' into several less ambiguous terms [Tarski]
     Full Idea: A time may come when we find ourselves confronted with several incompatible, but equally clear and precise, conceptions of truth. It will then become necessary to abandon the ambiguous usage of the word 'true', and introduce several terms instead.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 14)
     A reaction: There may be a whiff of the pragmatic attitude to truth here, though that view is not necessarily pluralist. Analytic philosophy needs much more splitting of difficult terms into several more focused terms.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Scheme (T) is not a definition of truth [Tarski]
     Full Idea: It is a mistake to regard scheme (T) as a definition of truth.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 15)
     A reaction: The point is, I take it, that the definition is the multitude of sentences which are generated by the schema, not the schema itself.
It is convenient to attach 'true' to sentences, and hence the language must be specified [Tarski]
     Full Idea: For several reasons it appears most convenient to apply the term 'true' to sentences, and we shall follow this course. Consequently, we must always relate the notion of truth, like that of a sentence, to a specific language.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 02)
     A reaction: Personally I take truth to attach to propositions, since sentences are ambiguous. In Idea 17308 the one sentence expresses three different truths (in my opinion), even though a single sentence (given in the object language) specifies it.
In the classical concept of truth, 'snow is white' is true if snow is white [Tarski]
     Full Idea: If we base ourselves on the classical conception of truth, we shall say that the sentence 'snow is white' is true if snow is white, and it is false if snow is not white.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 04)
     A reaction: I had not realised, prior to his, how closely Tarski is sticking to Aristotle's famous formulation of truth. The point is that you can only specify 'what is' using a language. Putting 'true' in the metalanguage gives specific content to Aristotle.
Each interpreted T-sentence is a partial definition of truth; the whole definition is their conjunction [Tarski]
     Full Idea: In 'X is true iff p' if we replace X by the name of a sentence and p by a particular sentence this can be considered a partial definition of truth. The whole definition has to be ...a logical conjunction of all these partial definitions.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 04)
     A reaction: This seems an unprecedented and odd way to define something. Define 'red' by '"This tomato is red" iff this tomato is red', etc? Define 'stone' by collecting together all the stones? The complex T-sentences are infinite in number.
Use 'true' so that all T-sentences can be asserted, and the definition will then be 'adequate' [Tarski]
     Full Idea: We wish to use the term 'true' in such a way that all the equivalences of the form (T) [i.e. X is true iff p] can be asserted, and we shall call a definition of truth 'adequate' if all these equivalences follow from it.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 04)
     A reaction: The interpretation of Tarski's theory is difficult. From this I'm thinking that 'true' is simply being defined as 'assertible'. This is the status of each line in a logical proof, if there is a semantic dimension to the proof (and not mere syntax).
We don't give conditions for asserting 'snow is white'; just that assertion implies 'snow is white' is true [Tarski]
     Full Idea: Semantic truth implies nothing regarding the conditions under which 'snow is white' can be asserted. It implies only that, whenever we assert or reject this sentence, we must be ready to assert or reject the correlated sentence '"snow is white" is true'.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 18)
     A reaction: This appears to identify truth with assertibility, which is pretty much what modern pragmatists say. How do you distinguish 'genuine' assertion from rhetorical, teasing or lying assertions? Genuine assertion implies truth? Hm.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
The best truth definition involves other semantic notions, like satisfaction (relating terms and objects) [Tarski]
     Full Idea: It turns out that the simplest and most natural way of obtaining an exact definition of truth is one which involves the use of other semantic notions, e.g. the notion of satisfaction (...which expresses relations between expressions and objects).
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 05)
     A reaction: While the T-sentences appear to be 'minimal' and 'deflationary', it seems important to remember that 'satisfaction', which is basic to his theory, is a very robust notion. He actually mentions 'objects'. But see Idea 19185.
Specify satisfaction for simple sentences, then compounds; true sentences are satisfied by all objects [Tarski]
     Full Idea: To define satisfaction we indicate which objects satisfy the simplest sentential functions, then state the conditions for compound functions. This applies automatically to sentences (with no free variables) so a true sentence is satisfied by all objects.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 11)
     A reaction: I presume nothing in the domain of objects can conflict with a sentence that has been satisfied by some of them, so 'all' the objects satisfy the sentence. Tarski doesn't use the word 'domain'. Basic satisfaction seems to be stipulated.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
We can't use a semantically closed language, or ditch our logic, so a meta-language is needed [Tarski]
     Full Idea: In a 'semantically closed' language all sentences which determine the adequate usage of 'true' can be asserted in the language. ...We can't change our logic, so we reject such languages. ...So must use two different languages to discuss truth.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 08-09)
     A reaction: This section explains why a meta-language is required. It rests entirely on the existence of the Liar paradox is a semantically closed language.
The metalanguage must contain the object language, logic, and defined semantics [Tarski]
     Full Idea: Every sentence which occurs in the object language must also occur in the metalanguage, or can be translated into the metalanguage. There must also be logical terms, ...and semantic terms can only be introduced in the metalanguage by definition.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 09)
     A reaction: He suggest that if the languages are 'typed', the meta-languag, to be 'richer', must contain variables of a higher logica type. Does this mean second-order logic?
3. Truth / F. Semantic Truth / 2. Semantic Truth
If listing equivalences is a reduction of truth, witchcraft is just a list of witch-victim pairs [Field,H on Tarski]
     Full Idea: By similar standards of reduction to Tarski's, one might prove witchcraft compatible with physicalism, as long as witches cast only a finite number of spells. We merely list witch-and-victim pairs, with no mention of the terms of witchcraft theory.
     From: comment on Alfred Tarski (The Semantic Conception of Truth [1944], 04) by Hartry Field - Tarski's Theory of Truth §4
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
We need an undefined term 'true' in the meta-language, specified by axioms [Tarski]
     Full Idea: We have to include the term 'true', or some other semantic term, in the list of undefined terms of the meta-language, and to express fundamental properties of the notion of truth in a series of axioms.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 10)
     A reaction: It sounds as if Tarski semantic theory gives truth for the object language, but then an axiomatic theory of truth is also needed for the metalanguage. Halbch and Horsten seem to want an axiomatic theory in the object language.
3. Truth / H. Deflationary Truth / 1. Redundant Truth
Truth can't be eliminated from universal claims, or from particular unspecified claims [Tarski]
     Full Idea: Truth can't be eliminated from universal statements saying all sentences of a certain type are true, or from the proof that 'all consequences of true sentences are true'. It is also needed if we can't name the sentence ('Plato's first sentence is true').
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 16)
     A reaction: This points to the deflationary view of truth, if its only role is in talking about other sentences in this way. Tarski gives the standard reason for rejecting the Redundancy view.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Semantics is a very modest discipline which solves no real problems [Tarski]
     Full Idea: Semantics as it is conceived in this paper is a sober and modest discipline which has no pretensions to being a universal patent-medicine for all the ills and diseases of mankind, whether imaginary or real.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 05)
     A reaction: Written in 1944. This remark encourages the minimal or deflationary interpretation of his theory of truth, but see the robust use of 'satisfaction' in Idea 19184.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth tables give prior conditions for logic, but are outside the system, and not definitions [Tarski]
     Full Idea: Logical sentences are often assigned preliminary conditions under which they are true or false (often given as truth tables). However, these are outside the system of logic, and should not be regarded as definitions of the terms involved.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 15)
     A reaction: Hence, presumably, the connectives are primitives (with no nature or meaning), and the truth tables are axioms for their use? This opinion of Tarski's may have helped shift the preference towards natural deduction introduction and elimination rules.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The truth definition proves semantic contradiction and excluded middle laws (not the logic laws) [Tarski]
     Full Idea: With our definition of truth we can prove the laws of contradiction and excluded middle. These semantic laws should not be identified with the related logical laws, which belong to the sentential calculus, and do not involve 'true' at all.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 12)
     A reaction: Very illuminating. I wish modern thinkers could be so clear about this matter. The logic contains 'P or not-P'. The semantics contains 'P is either true or false'. Critics say Tarski has presupposed 'classical' logic.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar makes us assert a false sentence, so it must be taken seriously [Tarski]
     Full Idea: In my judgement, it would be quite wrong and dangerous from the point of view of scientific progress to depreciate the importance of nhtinomies like the Liar Paradox, and treat them as jokes. The fact is we have been compelled to assert a false sentence.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 07)
     A reaction: This is the heartfelt cry of the perfectionist, who wants everything under control. It was the dream of the age of Frege to Hilbert, which gradually eroded after Gödel's Incompleteness proof. Short ordinary folk panic about the Liar?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
For Pythagoreans 'one' is not a number, but the foundation of numbers [Pythagoras, by Watson]
     Full Idea: For Pythagoreans, one, 1, is not a true number but the 'essence' of number, out of which the number system emerges.
     From: report of Pythagoras (reports [c.530 BCE], Ch.8) by Peter Watson - Ideas Ch.8
     A reaction: I think this is right! Counting and numbers only arise once the concept of individuality and identity have arisen. Counting to one is no more than observing the law of identity. 'Two' is the big adventure.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
22. Metaethics / B. Value / 2. Values / d. Health
Pythagoras taught that virtue is harmony, and health, and universal good, and God [Pythagoras, by Diog. Laertius]
     Full Idea: Pythagoras taught that virtue is harmony, and health, and universal good, and God.
     From: report of Pythagoras (reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.1.19
     A reaction: I like the link with health, because I consider that a bridge over the supposed fact-value gap. Very Pythagorean to think that virtue is harmony. Plato liked that thought.
23. Ethics / C. Virtue Theory / 3. Virtues / c. Justice
For Pythagoreans, justice is simply treating all people the same [Pythagoras, by Aristotle]
     Full Idea: Some even think that what is just is simple reciprocity, as the Pythagoreans maintained, because they defined justice simply as having done to one what one has done to another.
     From: report of Pythagoras (reports [c.530 BCE], 28) by Aristotle - Nicomachean Ethics 1132b22
     A reaction: One wonders what Pythagoreans made of slavery. Aristotle argues that officials, for example, have superior rights. The Pythagorean idea makes fairness the central aspect of justice, and that must at least be partly right.
26. Natural Theory / A. Speculations on Nature / 4. Mathematical Nature
For Pythagoreans the entire universe is made of numbers [Pythagoras, by Aristotle]
     Full Idea: For Pythagoreans the entire universe is constructed of numbers.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 1080b
When musical harmony and rhythm were discovered, similar features were seen in bodily movement [Pythagoras, by Plato]
     Full Idea: When our predecessors discovered musical scales, they also discovered similar features in bodily movement, which should also be measured numerically, and called 'tempos' and 'measures'.
     From: report of Pythagoras (reports [c.530 BCE]) by Plato - Philebus 17d
Pythagoreans think mathematical principles are the principles of all of nature [Pythagoras, by Aristotle]
     Full Idea: The Pythagoreans thought that the principles of mathematical entities were the principles of all entities.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 985b
Pythagoreans say things imitate numbers, but Plato says things participate in numbers [Pythagoras, by Aristotle]
     Full Idea: Pythagoreans said that entities existed by imitation of the numbers, whereas Plato said that it was by participation.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 987b
Pythagoreans define timeliness, justice and marriage in terms of numbers [Pythagoras, by Aristotle]
     Full Idea: The Pythagoreans offered definitions of a limited range of things on the basis of numbers; examples are timeliness, justice and marriage.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 1078b
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The modern idea of an immortal soul was largely created by Pythagoras [Pythagoras, by Watson]
     Full Idea: The modern concept of the immortal soul is a Greek idea, which owes much to Pythagoras.
     From: report of Pythagoras (reports [c.530 BCE]) by Peter Watson - Ideas Ch.5
     A reaction: You can see why it caught on - it is a very appealing idea. Watson connects the 'modern' view with the ideas of heaven and hell. Obviously the idea of an afterlife goes a long way back (judging from the contents of ancient graves).