Combining Texts

All the ideas for 'teaching', 'What Required for Foundation for Maths?' and 'Three Varieties of Knowledge'

unexpand these ideas     |    start again     |     specify just one area for these texts


49 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
Speak the truth, for this alone deifies man [Pythagoras, by Porphyry]
     Full Idea: Pythagoras advised above all things to speak the truth, for this alone deifies man.
     From: report of Pythagoras (reports [c.530 BCE]) by Porphyry - Life of Pythagoras §41
     A reaction: Idea 4421 (of Nietzsche) stands in contrast to this. I am not quite sure why speaking the truth has such a high value. I am inclined to a minimalist view, which is just that philosophy is an attempt to speak the truth, as fishermen try to catch fish.
1. Philosophy / B. History of Ideas / 2. Ancient Thought
Pythagoras discovered the numerical relation of sounds on a string [Pythagoras, by Diog. Laertius]
     Full Idea: Pythagoras discovered the numerical relation of sounds on a string.
     From: report of Pythagoras (reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.1.11
2. Reason / A. Nature of Reason / 5. Objectivity
Objective truth arises from interpersonal communication [Davidson]
     Full Idea: The source of the concept of objective truth is interpersonal communication.
     From: Donald Davidson (Three Varieties of Knowledge [1991], p.209)
     A reaction: This is a distinctively Davidsonian idea, arising out of Wittgenstein's Private Language Argument. We could go a step further, and just say that 'objectivity is a social concept'. Davidson more or less pleads guilty to pragmatism in this essay.
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
For Pythagoreans 'one' is not a number, but the foundation of numbers [Pythagoras, by Watson]
     Full Idea: For Pythagoreans, one, 1, is not a true number but the 'essence' of number, out of which the number system emerges.
     From: report of Pythagoras (reports [c.530 BCE], Ch.8) by Peter Watson - Ideas Ch.8
     A reaction: I think this is right! Counting and numbers only arise once the concept of individuality and identity have arisen. Counting to one is no more than observing the law of identity. 'Two' is the big adventure.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
11. Knowledge Aims / A. Knowledge / 4. Belief / e. Belief holism
A belief requires understanding the distinctions of true-and-false, and appearance-and-reality [Davidson]
     Full Idea: Having a belief demands in addition appreciating the contrast between true belief and false, between appearance and reality, mere seeming and being.
     From: Donald Davidson (Three Varieties of Knowledge [1991], p.209)
     A reaction: This sets the bar very high for belief (never mind knowledge), and seems to imply that animals don't have beliefs. How should we describe their cognitive states then? I would say these criteria only apply to actual knowledge.
13. Knowledge Criteria / E. Relativism / 2. Knowledge as Convention
Objectivity is intersubjectivity [Davidson]
     Full Idea: An entity is objective in so far as it is intersubjective.
     From: Donald Davidson (Three Varieties of Knowledge [1991]), quoted by Martin Kusch - Knowledge by Agreement Ch.10
     A reaction: This thought baffled me until I saw it in the context of socialised epistemology. Effectively objectivity is subsumed under justification, which in turn is seen in a social context, not private to individuals.
15. Nature of Minds / A. Nature of Mind / 4. Other Minds / b. Scepticism of other minds
If we know other minds through behaviour, but not our own, we should assume they aren't like me [Davidson]
     Full Idea: If the mental states of others are known only through their behavioral and other outward manifestations, while this is not true of our own mental states, why should we think our own mental states are anything like those of others?
     From: Donald Davidson (Three Varieties of Knowledge [1991], p.207)
     A reaction: His point is that if you seriously doubt other minds, you should follow through on the implications. But that is to treat it as a theory about other minds, rather an a sceptical worry. Descartes didn't walk into walls while writing Meditation 1.
15. Nature of Minds / A. Nature of Mind / 4. Other Minds / c. Knowing other minds
Knowing other minds rests on knowing both one's own mind and the external world [Davidson, by Dummett]
     Full Idea: Davidson argues that knowledge of other minds presupposes knowledge of one's own mind, and that there is no knowledge of other minds without knowledge of the external world.
     From: report of Donald Davidson (Three Varieties of Knowledge [1991]) by Michael Dummett - Common Sense and Physics Ch.10
     A reaction: Davidson't argument is actually hard to swallow because it is so long and complex. Compressing the point makes it begin to sound like a variant of the argument from analogy.
19. Language / F. Communication / 4. Private Language
Content of thought is established through communication, so knowledge needs other minds [Davidson]
     Full Idea: Until a baseline has been established by communication with someone else, there is no point is saying one's own thoughts have a propositional content. Hence knowledge of another mind is essential all thought and all knowledge.
     From: Donald Davidson (Three Varieties of Knowledge [1991], p.213)
     A reaction: This really is building a skyscraper on the slightly shaky claims of the Private Language Argument (e.g. Idea 4158). Animals are so important in discussions of this kind. Is an albatross more or less devoid of thought and belief?
19. Language / F. Communication / 6. Interpreting Language / c. Principle of charity
The principle of charity attributes largely consistent logic and largely true beliefs to speakers [Davidson]
     Full Idea: Concerning charity, the Principle of Coherence seeks logical consistency in the thought of the speaker, and the Principle of Correspondence seeks a similar response to features of the world to that of an interpreter. The speaker has logic and true belief.
     From: Donald Davidson (Three Varieties of Knowledge [1991], p.211)
     A reaction: Davidson adds a Kantian commitment to pure and universal reason to the very sceptical framework created by Quine. I agree with Davidson, but it seems more like faith than like an argument or an empirical observation.
22. Metaethics / B. Value / 2. Values / d. Health
Pythagoras taught that virtue is harmony, and health, and universal good, and God [Pythagoras, by Diog. Laertius]
     Full Idea: Pythagoras taught that virtue is harmony, and health, and universal good, and God.
     From: report of Pythagoras (reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.1.19
     A reaction: I like the link with health, because I consider that a bridge over the supposed fact-value gap. Very Pythagorean to think that virtue is harmony. Plato liked that thought.
23. Ethics / C. Virtue Theory / 3. Virtues / c. Justice
For Pythagoreans, justice is simply treating all people the same [Pythagoras, by Aristotle]
     Full Idea: Some even think that what is just is simple reciprocity, as the Pythagoreans maintained, because they defined justice simply as having done to one what one has done to another.
     From: report of Pythagoras (reports [c.530 BCE], 28) by Aristotle - Nicomachean Ethics 1132b22
     A reaction: One wonders what Pythagoreans made of slavery. Aristotle argues that officials, for example, have superior rights. The Pythagorean idea makes fairness the central aspect of justice, and that must at least be partly right.
26. Natural Theory / A. Speculations on Nature / 4. Mathematical Nature
Pythagoreans think mathematical principles are the principles of all of nature [Pythagoras, by Aristotle]
     Full Idea: The Pythagoreans thought that the principles of mathematical entities were the principles of all entities.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 985b
Pythagoreans say things imitate numbers, but Plato says things participate in numbers [Pythagoras, by Aristotle]
     Full Idea: Pythagoreans said that entities existed by imitation of the numbers, whereas Plato said that it was by participation.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 987b
When musical harmony and rhythm were discovered, similar features were seen in bodily movement [Pythagoras, by Plato]
     Full Idea: When our predecessors discovered musical scales, they also discovered similar features in bodily movement, which should also be measured numerically, and called 'tempos' and 'measures'.
     From: report of Pythagoras (reports [c.530 BCE]) by Plato - Philebus 17d
Pythagoreans define timeliness, justice and marriage in terms of numbers [Pythagoras, by Aristotle]
     Full Idea: The Pythagoreans offered definitions of a limited range of things on the basis of numbers; examples are timeliness, justice and marriage.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 1078b
For Pythagoreans the entire universe is made of numbers [Pythagoras, by Aristotle]
     Full Idea: For Pythagoreans the entire universe is constructed of numbers.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 1080b
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The modern idea of an immortal soul was largely created by Pythagoras [Pythagoras, by Watson]
     Full Idea: The modern concept of the immortal soul is a Greek idea, which owes much to Pythagoras.
     From: report of Pythagoras (reports [c.530 BCE]) by Peter Watson - Ideas Ch.5
     A reaction: You can see why it caught on - it is a very appealing idea. Watson connects the 'modern' view with the ideas of heaven and hell. Obviously the idea of an afterlife goes a long way back (judging from the contents of ancient graves).