Combining Texts

All the ideas for 'teaching', 'A Tour through Mathematical Logic' and 'Identity'

unexpand these ideas     |    start again     |     specify just one area for these texts


39 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
Speak the truth, for this alone deifies man [Pythagoras, by Porphyry]
     Full Idea: Pythagoras advised above all things to speak the truth, for this alone deifies man.
     From: report of Pythagoras (reports [c.530 BCE]) by Porphyry - Life of Pythagoras §41
     A reaction: Idea 4421 (of Nietzsche) stands in contrast to this. I am not quite sure why speaking the truth has such a high value. I am inclined to a minimalist view, which is just that philosophy is an attempt to speak the truth, as fishermen try to catch fish.
1. Philosophy / B. History of Ideas / 2. Ancient Thought
Pythagoras discovered the numerical relation of sounds on a string [Pythagoras, by Diog. Laertius]
     Full Idea: Pythagoras discovered the numerical relation of sounds on a string.
     From: report of Pythagoras (reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.1.11
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
     Full Idea: 'For every number x, x = x' is not a tautology, because it includes no connectives.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.2)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
     Full Idea: Deduction Theorem: If T ∪ {P} |- Q, then T |- (P → Q). This is the formal justification of the method of conditional proof (CPP). Its converse holds, and is essentially modus ponens.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
     Full Idea: Universal Generalization: If we can prove P(x), only assuming what sort of object x is, we may conclude ∀xP(x) for the same x.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: This principle needs watching closely. If you pick one person in London, with no presuppositions, and it happens to be a woman, can you conclude that all the people in London are women? Fine in logic and mathematics, suspect in life.
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
     Full Idea: Universal Specification: from ∀xP(x) we may conclude P(t), where t is an appropriate term. If something is true for all members of a domain, then it is true for some particular one that we specify.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
     Full Idea: Existential Generalization (or 'proof by example'): From P(t), where t is an appropriate term, we may conclude ∃xP(x).
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: It is amazing how often this vacuous-sounding principles finds itself being employed in discussions of ontology, but I don't quite understand why.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
     Full Idea: Empty Set Axiom: ∃x ∀y ¬ (y ∈ x). There is a set x which has no members (no y's). The empty set exists. There is a set with no members, and by extensionality this set is unique.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.3)
     A reaction: A bit bewildering for novices. It says there is a box with nothing in it, or a pair of curly brackets with nothing between them. It seems to be the key idea in set theory, because it asserts the idea of a set over and above any possible members.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
     Full Idea: The comprehension axiom says that any collection of objects that can be clearly specified can be considered to be a set.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.2)
     A reaction: This is virtually tautological, since I presume that 'clearly specified' means pinning down exact which items are the members, which is what a set is (by extensionality). The naïve version is, of course, not so hot.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
     Full Idea: One of the most appealing features of first-order logic is that the two 'turnstiles' (the syntactic single |-, and the semantic double |=), which are the two reasonable notions of logical consequence, actually coincide.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: In the excitement about the possibility of second-order logic, plural quantification etc., it seems easy to forget the virtues of the basic system that is the target of the rebellion. The issue is how much can be 'expressed' in first-order logic.
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
     Full Idea: The 'completeness' of first order-logic does not mean that every sentence or its negation is provable in first-order logic. We have instead the weaker result that every valid sentence is provable.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: Peter Smith calls the stronger version 'negation completeness'.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
     Full Idea: Model theory uses set theory to show that the theorem-proving power of the usual methods of deduction in mathematics corresponds perfectly to what must be true in actual mathematical structures.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: That more or less says that model theory demonstrates the 'soundness' of mathematics (though normal arithmetic is famously not 'complete'). Of course, he says they 'correspond' to the truths, rather than entailing them.
Model theory reveals the structures of mathematics [Wolf,RS]
     Full Idea: Model theory helps one to understand what it takes to specify a mathematical structure uniquely.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.1)
     A reaction: Thus it is the development of model theory which has led to the 'structuralist' view of mathematics.
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
     Full Idea: A 'structure' in model theory has a non-empty set, the 'universe', as domain of variables, a subset for each 'relation', some 'functions', and 'constants'.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.2)
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
     Full Idea: The three foundations of first-order model theory are the Completeness theorem, the Compactness theorem, and the Löwenheim-Skolem-Tarski theorem.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: On p.180 he notes that Compactness and LST make no mention of |- and are purely semantic, where Completeness shows the equivalence of |- and |=. All three fail for second-order logic (p.223).
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
     Full Idea: An 'isomorphism' is a bijection between two sets that preserves all structural components. The interpretations of each constant symbol are mapped across, and functions map the relation and function symbols.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.4)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
     Full Idea: The Löwenheim-Skolem-Tarski theorem demonstrates a serious limitation of first-order logic, and is one of primary reasons for considering stronger logics.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
     Full Idea: It is valuable to know that a theory is complete, because then we know it cannot be strengthened without passing to a more powerful language.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.5)
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
     Full Idea: Deductive logic, including first-order logic and other types of logic used in mathematics, is 'monotonic'. This means that we never retract a theorem on the basis of new givens. If T|-φ and T⊆SW, then S|-φ. Ordinary reasoning is nonmonotonic.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.7)
     A reaction: The classic example of nonmonotonic reasoning is the induction that 'all birds can fly', which is retracted when the bird turns out to be a penguin. He says nonmonotonic logic is a rich field in computer science.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
     Full Idea: Less theoretically, an ordinal is an equivalence class of well-orderings. Formally, we say a set is 'transitive' if every member of it is a subset of it, and an ordinal is a transitive set, all of whose members are transitive.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.4)
     A reaction: He glosses 'transitive' as 'every member of a member of it is a member of it'. So it's membership all the way down. This is the von Neumann rather than the Zermelo approach (which is based on singletons).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
For Pythagoreans 'one' is not a number, but the foundation of numbers [Pythagoras, by Watson]
     Full Idea: For Pythagoreans, one, 1, is not a true number but the 'essence' of number, out of which the number system emerges.
     From: report of Pythagoras (reports [c.530 BCE], Ch.8) by Peter Watson - Ideas Ch.8
     A reaction: I think this is right! Counting and numbers only arise once the concept of individuality and identity have arisen. Counting to one is no more than observing the law of identity. 'Two' is the big adventure.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
It is controversial whether only 'numerical identity' allows two things to be counted as one [Noonan]
     Full Idea: 'Numerical identity' implies the controversial view that it is the only identity relation in accordance with which we can properly count (or number) things: x and y are to be properly counted as one just in case they are numerically identical.
     From: Harold Noonan (Identity [2009], §1)
     A reaction: Noonan cites Geach, presumably to remind us of relative identity, where two things may be one or two, depending on what they are relative to. The one 'guard on the gate' may actually be two men.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
     Full Idea: One of the great achievements of modern mathematics has been the unification of its many types of objects. It began with showing geometric objects numerically or algebraically, and culminated with set theory representing all the normal objects.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: His use of the word 'object' begs all sorts of questions, if you are arriving from the street, where an object is something which can cause a bruise - but get used to it, because the word 'object' has been borrowed for new uses.
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
I could have died at five, but the summation of my adult stages could not [Noonan]
     Full Idea: Persons have different modal properties from the summations of person-stages. …I might have died when I was five. But the maximal summation of person-stages which perdurantists say is me could not have had a temporal extent of a mere five years.
     From: Harold Noonan (Identity [2009], §5)
     A reaction: Thus the summation of stages seems to fail Leibniz's Law, since truths about a part are not true of the whole. But my foot might be amputated without me being amputated. The objection is the fallacy of composition?
9. Objects / E. Objects over Time / 5. Temporal Parts
Stage theorists accept four-dimensionalism, but call each stage a whole object [Noonan]
     Full Idea: Stage theorists, accepting the ontology of perdurance, modify the semantics to secure the result that fatness is a property of a cat. Every temporal part of a cat (such as Tabby-on-Monday) is a cat. …(but they pay a price over the counting of cats).
     From: Harold Noonan (Identity [2009], §5)
     A reaction: [Noonan cites Hawley and Sider for this view. The final parenthesis compresses Noonan] I would take the difficulty over counting cats to be fatal to the view. It produces too many cats, or too few, or denies counting altogether.
9. Objects / F. Identity among Objects / 2. Defining Identity
Problems about identity can't even be formulated without the concept of identity [Noonan]
     Full Idea: If identity is problematic, it is difficult to see how the problem could be resolved, since it is difficult to see how a thinker could have the conceptual resources with which to explain the concept of identity whilst lacking that concept itself.
     From: Harold Noonan (Identity [2009], §1)
     A reaction: I don't think I accept this. We can comprehend the idea of a mind that didn't think in terms of identities (at least for objects). I suppose any relation of a mind to the world has to distinguish things in some way. Does the Parmenidean One have identity?
Identity is usually defined as the equivalence relation satisfying Leibniz's Law [Noonan]
     Full Idea: Numerical identity is usually defined as the equivalence relation (or: the reflexive relation) satisfying Leibniz's Law, the indiscernibility of identicals, where everything true of x is true of y.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: Noonan says this must include 'is identical to x' among the truths, and so is circular
Identity definitions (such as self-identity, or the smallest equivalence relation) are usually circular [Noonan]
     Full Idea: Identity can be circularly defined, as 'the relation everything has to itself and to nothing else', …or as 'the smallest equivalence relation'.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: The first one is circular because 'nothing else' implies identity. The second is circular because it has to quantify over all equivalence relations. (So says Noonan).
Identity can only be characterised in a second-order language [Noonan]
     Full Idea: There is no condition in a first-order language for a predicate to express identity, rather than indiscernibility within the resources of the language. Leibniz's Law is statable in a second-order language, so identity can be uniquely characterised.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: The point is that first-order languages only refer to all objects, but you need to refer to all properties to include Leibniz's Law. Quine's 'Identity, Ostension and Hypostasis' is the source of this idea.
9. Objects / F. Identity among Objects / 8. Leibniz's Law
Indiscernibility is basic to our understanding of identity and distinctness [Noonan]
     Full Idea: Leibniz's Law (the indiscernibility of identicals) appears to be crucial to our understanding of identity, and, more particularly, to our understanding of distinctness.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: True, but indiscernibility concerns the epistemology, and identity concerns the ontology.
Leibniz's Law must be kept separate from the substitutivity principle [Noonan]
     Full Idea: Leibniz's Law must be clearly distinguished from the substitutivity principle, that if 'a' and 'b' are codesignators they are substitutable salva veritate.
     From: Harold Noonan (Identity [2009], §2)
     A reaction: He gives a bunch of well-known problem cases for substitutivity. The Morning Star, Giorgione, and the number of planets won't work. Belief contexts, or facts about spelling, may not be substitutable.
22. Metaethics / B. Value / 2. Values / d. Health
Pythagoras taught that virtue is harmony, and health, and universal good, and God [Pythagoras, by Diog. Laertius]
     Full Idea: Pythagoras taught that virtue is harmony, and health, and universal good, and God.
     From: report of Pythagoras (reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 08.1.19
     A reaction: I like the link with health, because I consider that a bridge over the supposed fact-value gap. Very Pythagorean to think that virtue is harmony. Plato liked that thought.
23. Ethics / C. Virtue Theory / 3. Virtues / c. Justice
For Pythagoreans, justice is simply treating all people the same [Pythagoras, by Aristotle]
     Full Idea: Some even think that what is just is simple reciprocity, as the Pythagoreans maintained, because they defined justice simply as having done to one what one has done to another.
     From: report of Pythagoras (reports [c.530 BCE], 28) by Aristotle - Nicomachean Ethics 1132b22
     A reaction: One wonders what Pythagoreans made of slavery. Aristotle argues that officials, for example, have superior rights. The Pythagorean idea makes fairness the central aspect of justice, and that must at least be partly right.
26. Natural Theory / A. Speculations on Nature / 4. Mathematical Nature
Pythagoreans think mathematical principles are the principles of all of nature [Pythagoras, by Aristotle]
     Full Idea: The Pythagoreans thought that the principles of mathematical entities were the principles of all entities.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 985b
Pythagoreans say things imitate numbers, but Plato says things participate in numbers [Pythagoras, by Aristotle]
     Full Idea: Pythagoreans said that entities existed by imitation of the numbers, whereas Plato said that it was by participation.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 987b
When musical harmony and rhythm were discovered, similar features were seen in bodily movement [Pythagoras, by Plato]
     Full Idea: When our predecessors discovered musical scales, they also discovered similar features in bodily movement, which should also be measured numerically, and called 'tempos' and 'measures'.
     From: report of Pythagoras (reports [c.530 BCE]) by Plato - Philebus 17d
Pythagoreans define timeliness, justice and marriage in terms of numbers [Pythagoras, by Aristotle]
     Full Idea: The Pythagoreans offered definitions of a limited range of things on the basis of numbers; examples are timeliness, justice and marriage.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 1078b
For Pythagoreans the entire universe is made of numbers [Pythagoras, by Aristotle]
     Full Idea: For Pythagoreans the entire universe is constructed of numbers.
     From: report of Pythagoras (reports [c.530 BCE]) by Aristotle - Metaphysics 1080b
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The modern idea of an immortal soul was largely created by Pythagoras [Pythagoras, by Watson]
     Full Idea: The modern concept of the immortal soul is a Greek idea, which owes much to Pythagoras.
     From: report of Pythagoras (reports [c.530 BCE]) by Peter Watson - Ideas Ch.5
     A reaction: You can see why it caught on - it is a very appealing idea. Watson connects the 'modern' view with the ideas of heaven and hell. Obviously the idea of an afterlife goes a long way back (judging from the contents of ancient graves).