Combining Texts

All the ideas for 'After Finitude', 'A Study of Concepts' and 'Introducing the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


79 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Since Kant we think we can only access 'correlations' between thinking and being [Meillassoux]
     Full Idea: The central notion of philosophy since Kant is 'correlation' - that we only ever have access to the correlation between thinking and being, and never to either term considered apart from the other.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux's charge is that philosophy has thereby completely failed to grasp the scientific revolution, which has used mathematics to make objectivity possible. Quine and Putnam would be good examples of what he has in mind.
The Copernican Revolution decentres the Earth, but also decentres thinking from reality [Meillassoux]
     Full Idea: The Copernican Revolution is not so much the decentring of observers in the solar system, but (by the mathematizing of nature) the decentring of thought relative to the world within the process of knowledge.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: In other words, I take it, the Copernican Revolution was the discovery of objectivity. That is a very nice addition to my History of Ideas collection.
1. Philosophy / B. History of Ideas / 6. Twentieth Century Thought
In Kant the thing-in-itself is unknowable, but for us it has become unthinkable [Meillassoux]
     Full Idea: The major shift that has occurred in the conception of thought from Kant's time to ours is from the unknowability of the thing-in-itself to its unthinkability.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: Meillassoux is making the case that philosophy is alienating us more and more from the triumphant realism of the scientific revolution. He says thinking has split from being. He's right. Modern American pragmatists are the worst (not Peirce!).
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Since Kant, philosophers have claimed to understand science better than scientists do [Meillassoux]
     Full Idea: Ever since Kant, to think science as a philosopher has been to claim that science harbours a meaning other than the one delivered by science itself.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: The point is that science discovered objectivity (via the mathematising of nature), and Kant utterly rejected objectivity, by enmeshing the human mind in every possible scientific claim. This makes Meillassoux and I very cross.
2. Reason / A. Nature of Reason / 5. Objectivity
Since Kant, objectivity is defined not by the object, but by the statement's potential universality [Meillassoux]
     Full Idea: Since Kant, objectivity is no longer defined with reference to the object in itself, but rather with reference to the possible universality of an objective statement.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux disapproves of this, as a betrayal by philosophers of the scientific revolution, which gave us true objectivity (e.g. about how the world was before humanity).
2. Reason / B. Laws of Thought / 2. Sufficient Reason
If we insist on Sufficient Reason the world will always be a mystery to us [Meillassoux]
     Full Idea: So long as we continue to believe that there is a reason why things are the way they are rather than some other way, we will construe this world is a mystery, since no such reason will every be vouchsafed to us.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Giving up sufficient reason sounds like a rather drastic response to this. Put it like this: Will we ever be able to explain absolutely everything? No. So will the world always be a little mysterious to us? Yes, obviously. Is that a problem? No!
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction is unjustified, so it only reveals a fact about thinking, not about reality? [Meillassoux]
     Full Idea: The principle of non-contradiction itself is without reason, and consequently it can only be the norm for what is thinkable by us, rather than for what is possible in the absolute sense.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: This is not Meillassoux's view, but describes the modern heresy of 'correlationism', which ties all assessments of how reality is to our capacity to think about it. Personally I take logical non-contradiction to derive from non-contradiction in nature.
2. Reason / D. Definition / 8. Impredicative Definition
An 'impredicative' definition seems circular, because it uses the term being defined [Friend]
     Full Idea: An 'impredicative' definition is one that uses the terms being defined in order to give the definition; in some way the definition is then circular.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], Glossary)
     A reaction: There has been a big controversy in the philosophy of mathematics over these. Shapiro gives the definition of 'village idiot' (which probably mentions 'village') as an example.
2. Reason / D. Definition / 10. Stipulative Definition
Classical definitions attempt to refer, but intuitionist/constructivist definitions actually create objects [Friend]
     Full Idea: In classical logic definitions are thought of as revealing our attempts to refer to objects, ...but for intuitionist or constructivist logics, if our definitions do not uniquely characterize an object, we are not entitled to discuss the object.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.4)
     A reaction: In defining a chess piece we are obviously creating. In defining a 'tree' we are trying to respond to fact, but the borderlines are vague. Philosophical life would be easier if we were allowed a mixture of creation and fact - so let's have that.
2. Reason / D. Definition / 13. Against Definition
Most people can't even define a chair [Peacocke]
     Full Idea: Ordinary speakers are notoriously unsuccessful if asked to offer an explicit definition of the concept 'chair'.
     From: Christopher Peacocke (A Study of Concepts [1992], 6.1)
2. Reason / E. Argument / 5. Reductio ad Absurdum
Reductio ad absurdum proves an idea by showing that its denial produces contradiction [Friend]
     Full Idea: Reductio ad absurdum arguments are ones that start by denying what one wants to prove. We then prove a contradiction from this 'denied' idea and more reasonable ideas in one's theory, showing that we were wrong in denying what we wanted to prove.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is a mathematical definition, which rests on logical contradiction, but in ordinary life (and philosophy) it would be enough to show that denial led to absurdity, rather than actual contradiction.
3. Truth / A. Truth Problems / 8. Subjective Truth
Anti-realists see truth as our servant, and epistemically contrained [Friend]
     Full Idea: For the anti-realist, truth belongs to us, it is our servant, and as such, it must be 'epistemically constrained'.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: Put as clearly as this, it strikes me as being utterly and spectacularly wrong, a complete failure to grasp the elementary meaning of a concept etc. etc. If we aren't the servants of truth then we jolly we ought to be. Truth is above us.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
In classical/realist logic the connectives are defined by truth-tables [Friend]
     Full Idea: In the classical or realist view of logic the meaning of abstract symbols for logical connectives is given by the truth-tables for the symbol.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007])
     A reaction: Presumably this is realist because it connects them to 'truth', but only if that involves a fairly 'realist' view of truth. You could, of course, translate 'true' and 'false' in the table to empty (formalist) symbols such a 0 and 1. Logic is electronics.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Double negation elimination is not valid in intuitionist logic [Friend]
     Full Idea: In intuitionist logic, if we do not know that we do not know A, it does not follow that we know A, so the inference (and, in general, double negation elimination) is not intuitionistically valid.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: That inference had better not be valid in any logic! I am unaware of not knowing the birthday of someone I have never heard of. Propositional attitudes such as 'know' are notoriously difficult to explain in formal logic.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic was developed for fictional or non-existent objects [Friend]
     Full Idea: Free logic is especially designed to help regiment our reasoning about fictional objects, or nonexistent objects of some sort.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.7)
     A reaction: This makes it sound marginal, but I wonder whether existential commitment shouldn't be eliminated from all logic. Why do fictional objects need a different logic? What logic should we use for Robin Hood, if we aren't sure whether or not he is real?
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
We can allow contradictions in thought, but not inconsistency [Meillassoux]
     Full Idea: For contemporary logicians, it is not non-contradiction that provides the criterion for what is thinkable, but rather inconsistency.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: The point is that para-consistent logic might permit isolated contradictions (as true) within a system, but it is only contradiction across the system (inconsistencies) which make the system untenable.
Paraconsistent logics are to prevent computers crashing when data conflicts [Meillassoux]
     Full Idea: Paraconsistent logics were only developed in order to prevent computers, such as expert medical systems, from deducing anything whatsoever from contradictory data, because of the principle of 'ex falso quodlibet'.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
Paraconsistent logic is about statements, not about contradictions in reality [Meillassoux]
     Full Idea: Paraconsistent logics are only ever dealing with contradictions inherent in statements about the world, never with the real contradictions in the world.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: Thank goodness for that! I can accept that someone in a doorway is both in the room and not in the room, but not that they are existing in a real state of contradiction. I fear that a few daft people embrace the logic as confirming contradictory reality.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'proper subset' of A contains only members of A, but not all of them [Friend]
     Full Idea: A 'subset' of A is a set containing only members of A, and a 'proper subset' is one that does not contain all the members of A. Note that the empty set is a subset of every set, but it is not a member of every set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Is it the same empty set in each case? 'No pens' is a subset of 'pens', but is it a subset of 'paper'? Idea 8219 should be borne in mind when discussing such things, though I am not saying I agree with it.
A 'powerset' is all the subsets of a set [Friend]
     Full Idea: The 'powerset' of a set is a set made up of all the subsets of a set. For example, the powerset of {3,7,9} is {null, {3}, {7}, {9}, {3,7}, {3,9}, {7,9}, {3,7,9}}. Taking the powerset of an infinite set gets us from one infinite cardinality to the next.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Note that the null (empty) set occurs once, but not in the combinations. I begin to have queasy sympathies with the constructivist view of mathematics at this point, since no one has the time, space or energy to 'take' an infinite powerset.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Set theory makes a minimum ontological claim, that the empty set exists [Friend]
     Full Idea: As a realist choice of what is basic in mathematics, set theory is rather clever, because it only makes a very simple ontological claim: that, independent of us, there exists the empty set. The whole hierarchy of finite and infinite sets then follows.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Even so, for non-logicians the existence of the empty set is rather counterintuitive. "There was nobody on the road, so I overtook him". See Ideas 7035 and 8322. You might work back to the empty set, but how do you start from it?
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Infinite sets correspond one-to-one with a subset [Friend]
     Full Idea: Two sets are the same size if they can be placed in one-to-one correspondence. But even numbers have one-to-one correspondence with the natural numbers. So a set is infinite if it has one-one correspondence with a proper subset.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Dedekind's definition. We can match 1 with 2, 2 with 4, 3 with 6, 4 with 8, etc. Logicians seem happy to give as a definition anything which fixes the target uniquely, even if it doesn't give the essence. See Frege on 0 and 1, Ideas 8653/4.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend]
     Full Idea: Zermelo-Fraenkel and Gödel-Bernays set theory differ over the notions of ordinal construction and over the notion of class, among other things. Then there are optional axioms which can be attached, such as the axiom of choice and the axiom of infinity.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.6)
     A reaction: This summarises the reasons why we cannot just talk about 'set theory' as if it was a single concept. The philosophical interest I would take to be found in disentangling the ontological commitments of each version.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle is syntactic; it just says A or not-A, not whether they are true or false [Friend]
     Full Idea: The law of excluded middle is purely syntactic: it says for any well-formed formula A, either A or not-A. It is not a semantic law; it does not say that either A is true or A is false. The semantic version (true or false) is the law of bivalence.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: No wonder these two are confusing, sufficiently so for a lot of professional philosophers to blur the distinction. Presumably the 'or' is exclusive. So A-and-not-A is a contradiction; but how do you explain a contradiction without mentioning truth?
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Intuitionists read the universal quantifier as "we have a procedure for checking every..." [Friend]
     Full Idea: In the intuitionist version of quantification, the universal quantifier (normally read as "all") is understood as "we have a procedure for checking every" or "we have checked every".
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.5)
     A reaction: It seems better to describe this as 'verificationist' (or, as Dummett prefers, 'justificationist'). Intuition suggests an ability to 'see' beyond the evidence. It strikes me as bizarre to say that you can't discuss things you can't check.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend]
     Full Idea: The realist meets the Burali-Forti paradox by saying that all the ordinals are a 'class', not a set. A proper class is what we discuss when we say "all" the so-and-sos when they cannot be reached by normal set-construction. Grammar is their only limit.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This strategy would be useful for Class Nominalism, which tries to define properties in terms of classes, but gets tangled in paradoxes. But why bother with strict sets if easy-going classes will do just as well? Descartes's Dream: everything is rational.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox asks whether the set of all ordinals is itself an ordinal [Friend]
     Full Idea: The Burali-Forti paradox says that if ordinals are defined by 'gathering' all their predecessors with the empty set, then is the set of all ordinals an ordinal? It is created the same way, so it should be a further member of this 'complete' set!
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is an example (along with Russell's more famous paradox) of the problems that began to appear in set theory in the early twentieth century. See Idea 8675 for a modern solution.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The 'integers' are the positive and negative natural numbers, plus zero [Friend]
     Full Idea: The set of 'integers' is all of the negative natural numbers, and zero, together with the positive natural numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Zero always looks like a misfit at this party. Credit and debit explain positive and negative nicely, but what is the difference between having no money, and money being irrelevant? I can be 'broke', but can the North Pole be broke?
The 'rational' numbers are those representable as fractions [Friend]
     Full Idea: The 'rational' numbers are all those that can be represented in the form m/n (i.e. as fractions), where m and n are natural numbers different from zero.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Pythagoreans needed numbers to stop there, in order to represent the whole of reality numerically. See irrational numbers for the ensuing disaster. How can a universe with a finite number of particles contain numbers that are not 'rational'?
A number is 'irrational' if it cannot be represented as a fraction [Friend]
     Full Idea: A number is 'irrational' just in case it cannot be represented as a fraction. An irrational number has an infinite non-repeating decimal expansion. Famous examples are pi and e.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: There must be an infinite number of irrational numbers. You could, for example, take the expansion of pi, and change just one digit to produce a new irrational number, and pi has an infinity of digits to tinker with.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
The natural numbers are primitive, and the ordinals are up one level of abstraction [Friend]
     Full Idea: The natural numbers are quite primitive, and are what we first learn about. The order of objects (the 'ordinals') is one level of abstraction up from the natural numbers: we impose an order on objects.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: Note the talk of 'levels of abstraction'. So is there a first level of abstraction? Dedekind disagrees with Friend (Idea 7524). I would say that natural numbers are abstracted from something, but I'm not sure what. See Structuralism in maths.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Cardinal numbers answer 'how many?', with the order being irrelevant [Friend]
     Full Idea: The 'cardinal' numbers answer the question 'How many?'; the order of presentation of the objects being counted as immaterial. Def: the cardinality of a set is the number of members of the set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: If one asks whether cardinals or ordinals are logically prior (see Ideas 7524 and 8661), I am inclined to answer 'neither'. Presenting them as answers to the questions 'how many?' and 'which comes first?' is illuminating.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The 'real' numbers (rationals and irrationals combined) is the Continuum, which has no gaps [Friend]
     Full Idea: The set of 'real' numbers, which consists of the rational numbers and the irrational numbers together, represents "the continuum", since it is like a smooth line which has no gaps (unlike the rational numbers, which have the irrationals missing).
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: The Continuum is the perfect abstract object, because a series of abstractions has arrived at a vast limit in its nature. It still has dizzying infinities contained within it, and at either end of the line. It makes you feel humble.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
What is mathematically conceivable is absolutely possible [Meillassoux]
     Full Idea: We must establish the thesis that what is mathematically conceivable is absolutely possible.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: The truth of this thesis would permanently establish mathematics as the only possible language of science. Personally I have no idea how you could prove or assess such a thesis. It is a lovely speculation, though. 'The structure of the possible' (p,127)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Raising omega to successive powers of omega reveal an infinity of infinities [Friend]
     Full Idea: After the multiples of omega, we can successively raise omega to powers of omega, and after that is done an infinite number of times we arrive at a new limit ordinal, which is called 'epsilon'. We have an infinite number of infinite ordinals.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: When most people are dumbstruck by the idea of a single infinity, Cantor unleashes an infinity of infinities, which must be the highest into the stratosphere of abstract thought that any human being has ever gone.
The first limit ordinal is omega (greater, but without predecessor), and the second is twice-omega [Friend]
     Full Idea: The first 'limit ordinal' is called 'omega', which is ordinal because it is greater than other numbers, but it has no immediate predecessor. But it has successors, and after all of those we come to twice-omega, which is the next limit ordinal.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: This is the gateway to Cantor's paradise of infinities, which Hilbert loved and defended. Who could resist the pleasure of being totally boggled (like Aristotle) by a concept such as infinity, only to have someone draw a map of it? See 8663 for sequel.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Between any two rational numbers there is an infinite number of rational numbers [Friend]
     Full Idea: Since between any two rational numbers there is an infinite number of rational numbers, we could consider that we have infinity in three dimensions: positive numbers, negative numbers, and the 'depth' of infinite numbers between any rational numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: This is before we even reach Cantor's staggering infinities (Ideas 8662 and 8663), which presumably reside at the outer reaches of all three of these dimensions of infinity. The 'deep' infinities come from fractions with huge denominators.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Is mathematics based on sets, types, categories, models or topology? [Friend]
     Full Idea: Successful competing founding disciplines in mathematics include: the various set theories, type theory, category theory, model theory and topology.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Or none of the above? Set theories are very popular. Type theory is, apparently, discredited. Shapiro has a version of structuralism based on model theory (which sound promising). Topology is the one that intrigues me...
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical theories can be translated into the language of set theory [Friend]
     Full Idea: Most of mathematics can be faithfully redescribed by classical (realist) set theory. More precisely, we can translate other mathematical theories - such as group theory, analysis, calculus, arithmetic, geometry and so on - into the language of set theory.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is why most mathematicians seem to regard set theory as foundational. We could also translate football matches into the language of atomic physics.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The number 8 in isolation from the other numbers is of no interest [Friend]
     Full Idea: There is no interest for the mathematician in studying the number 8 in isolation from the other numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This is a crucial and simple point (arising during a discussion of Shapiro's structuralism). Most things are interesting in themselves, as well as for their relationships, but mathematical 'objects' just are relationships.
In structuralism the number 8 is not quite the same in different structures, only equivalent [Friend]
     Full Idea: Structuralists give a historical account of why the 'same' number occupies different structures. Numbers are equivalent rather than identical. 8 is the immediate predecessor of 9 in the whole numbers, but in the rationals 9 has no predecessor.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: I don't become a different person if I move from a detached house to a terraced house. This suggests that 8 can't be entirely defined by its relations, and yet it is hard to see what its intrinsic nature could be, apart from the units which compose it.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Are structures 'ante rem' (before reality), or are they 'in re' (grounded in physics)? [Friend]
     Full Idea: Structuralists disagree over whether objects in structures are 'ante rem' (before reality, existing independently of whether the objects exist) or 'in re' (in reality, grounded in the real world, usually in our theories of physics).
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: Shapiro holds the first view, Hellman and Resnik the second. The first view sounds too platonist and ontologically extravagant; the second sounds too contingent and limited. The correct account is somewhere in abstractions from the real.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralist says maths concerns concepts about base objects, not base objects themselves [Friend]
     Full Idea: According to the structuralist, mathematicians study the concepts (objects of study) such as variable, greater, real, add, similar, infinite set, which are one level of abstraction up from prima facie base objects such as numbers, shapes and lines.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: This still seems to imply an ontology in which numbers, shapes and lines exist. I would have thought you could eliminate the 'base objects', and just say that the concepts are one level of abstraction up from the physical world.
Structuralism focuses on relations, predicates and functions, with objects being inessential [Friend]
     Full Idea: Structuralism says we study whole structures: objects together with their predicates, relations that bear between them, and functions that take us from one domain of objects to a range of other objects. The objects can even be eliminated.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: The unity of object and predicate is a Quinean idea. The idea that objects are inessential is the dramatic move. To me the proposal has very strong intuitive appeal. 'Eight' is meaningless out of context. Ordinality precedes cardinality? Ideas 7524/8661.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
'In re' structuralism says that the process of abstraction is pattern-spotting [Friend]
     Full Idea: In the 'in re' version of mathematical structuralism, pattern-spotting is the process of abstraction.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This might work for non-mathematical abstraction as well, if we are allowed to spot patterns within sensual experience, and patterns within abstractions. Properties are causal patterns in the world? No - properties cause patterns.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend]
     Full Idea: The main philosophical problem with the position of platonism or realism is the epistemic problem: of explaining what perception or intuition consists in; how it is possible that we should accurately detect whatever it is we are realists about.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.5)
     A reaction: The best bet, I suppose, is that the mind directly perceives concepts just as eyes perceive the physical (see Idea 8679), but it strikes me as implausible. If we have to come up with a special mental faculty for an area of knowledge, we are in trouble.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Mathematics should be treated as true whenever it is indispensable to our best physical theory [Friend]
     Full Idea: Central to naturalism about mathematics are 'indispensability arguments', to the effect that some part of mathematics is indispensable to our best physical theory, and therefore we ought to take that part of mathematics to be true.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.1)
     A reaction: Quine and Putnam hold this view; Field challenges it. It has the odd consequence that the dispensable parts (if they can be identified!) do not need to be treated as true (even though they might follow logically from the dispensable parts!). Wrong!
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend]
     Full Idea: There are not enough constraints in the Formalist view of mathematics, so there is no way to select a direction for trying to develop mathematics. There is no part of mathematics that is more important than another.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.6)
     A reaction: One might reply that an area of maths could be 'important' if lots of other areas depended on it, and big developments would ripple big changes through the interior of the subject. Formalism does, though, seem to reduce maths to a game.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Constructivism rejects too much mathematics [Friend]
     Full Idea: Too much of mathematics is rejected by the constructivist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: This was Hilbert's view. This seems to be generally true of verificationism. My favourite example is that legitimate speculations can be labelled as meaningless.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists typically retain bivalence but reject the law of excluded middle [Friend]
     Full Idea: An intuitionist typically retains bivalence, but rejects the law of excluded middle.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: The idea would be to say that only T and F are available as truth-values, but failing to be T does not ensure being F, but merely not-T. 'Unproven' is not-T, but may not be F.
7. Existence / A. Nature of Existence / 1. Nature of Existence
The absolute is the impossibility of there being a necessary existent [Meillassoux]
     Full Idea: We maintain that it is absolutely necessary that every entity might not exist. ...The absolute is the absolute impossibility of a necessary being.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: This is the main thesis of his book. The usual candidates for necessary existence are God, and mathematical objects. I am inclined to agree with Meillassoux.
7. Existence / A. Nature of Existence / 5. Reason for Existence
It is necessarily contingent that there is one thing rather than another - so something must exist [Meillassoux]
     Full Idea: It is necessary that there be something rather than nothing because it is necessarily contingent that there is something rather than something else.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: The great charm of metaphysics is the array of serious answers to the question of why there is something rather than nothing. You'll need to read Meillassoux's book to understand this one.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
We must give up the modern criterion of existence, which is a correlation between thought and being [Meillassoux]
     Full Idea: It is incumbent upon us to break with the ontological requisite of the moderns, according to which 'to be is to be a correlate'.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: He blames Kant for this pernicious idea, which has driven philosophy away from realist science, when it should be supporting and joining it. As a realist I agree, and find Meillassoux very illuminating on the subject.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Structuralists call a mathematical 'object' simply a 'place in a structure' [Friend]
     Full Idea: What the mathematician labels an 'object' in her discipline, is called 'a place in a structure' by the structuralist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.5)
     A reaction: This is a strategy for dispersing the idea of an object in the world of thought, parallel to attempts to eliminate them from physical ontology (e.g. Idea 614).
10. Modality / B. Possibility / 5. Contingency
Possible non-being which must be realised is 'precariousness'; absolute contingency might never not-be [Meillassoux]
     Full Idea: My term 'precariousness' designates a possibility of not-being which must eventually be realised. By contrast, absolute contingency designates a pure possibility; one which may never be realised.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: I thoroughly approve of this distinction, because I have often enountered the assumption that all contingency is precariousness, and I have never seen why that should be so. In Aquinas's Third Way, for example. The 6 on a die may never come up.
10. Modality / B. Possibility / 7. Chance
The idea of chance relies on unalterable physical laws [Meillassoux]
     Full Idea: The very notion of chance is only conceivable on condition that there are unalterable physical laws.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Laws might be contingent, even though they never alter. Chance in horse racing relies on the stability of whole institution of horse racing.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Unlike speculative idealism, transcendental idealism assumes the mind is embodied [Meillassoux]
     Full Idea: What distinguishes transcendental idealism from speculative idealism is the fact that the former does not posit the existence of the transcendental subject apart from its bodily individuation.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: These modern French philosophers explain things so much more clearly than the English! The 'speculative' version is seen in Berkeley. On p.17 he says transcendental idealism is 'civilised', and speculative idealism is 'uncouth'.
12. Knowledge Sources / B. Perception / 1. Perception
Perceptual concepts causally influence the content of our experiences [Peacocke]
     Full Idea: Once a thinker has acquired a perceptually individuated concept, his possession of that concept can causally influence what contents his experiences possess.
     From: Christopher Peacocke (A Study of Concepts [1992], 3.3)
     A reaction: Like having 35 different words for 'snow', I suppose. I'm never convinced by such claims. Having the concepts may well influence what you look at or listen to, but I don't see the deliverances of the senses being changed by the concepts.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
The aspects of objects that can be mathematical allow it to have objective properties [Meillassoux]
     Full Idea: All aspects of the object that can give rise to a mathematical thought rather than to a perception or a sensation can be meaningfully turned into the properties of the thing not only as it is with me, but also as it is without me.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: This is Meillassoux's spin on the primary/secondary distinction, which he places at the heart of the scientific revolution. Cartesian dualism offers a separate space for the secondary qualities. He is appalled when philosophers reject the distinction.
12. Knowledge Sources / B. Perception / 6. Inference in Perception
Perception has proto-propositions, between immediate experience and concepts [Peacocke]
     Full Idea: Perceptual experience has a second layer of nonconceptual representational content, distinct from immediate 'scenarios' and from conceptual contents. These additional contents I call 'protopropositions', containing an individual and a property/relation.
     From: Christopher Peacocke (A Study of Concepts [1992], 3.3)
     A reaction: When philosophers start writing this sort of thing, I want to turn to neuroscience and psychology. I suppose the philosopher's justification for this sort of speculation is epistemological, but I see no good coming of it.
14. Science / B. Scientific Theories / 1. Scientific Theory
How can we mathematically describe a world that lacks humans? [Meillassoux]
     Full Idea: How is mathematical discourse able to describe a reality where humanity is absent?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: He is referring to the prehistoric world. He takes this to be a key question about the laws of nature. We extrapolate mathematically from the experienced world, relying on the stability of the laws. Must they be necessary to be stable? No, it seems.
14. Science / C. Induction / 3. Limits of Induction
Hume's question is whether experimental science will still be valid tomorrow [Meillassoux]
     Full Idea: Hume's question can be formulated as follows: can we demonstrate that the experimental science which is possible today will still be possible tomorrow?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Could there be deep universal changes going on in nature which science could never, even in principle, detect?
15. Nature of Minds / B. Features of Minds / 1. Consciousness / f. Higher-order thought
Consciousness of a belief isn't a belief that one has it [Peacocke]
     Full Idea: I dispute the view that consciousness of a belief consists in some kind of belief that one has the belief.
     From: Christopher Peacocke (A Study of Concepts [1992], 6.2)
     A reaction: Thus if one is trying to grasp the notion of higher-order thought, it doesn't have to be just more of same but one level up. Any sensible view of the brain would suggest that one sort of activity would lead into an entirely different sort.
16. Persons / B. Nature of the Self / 4. Presupposition of Self
The transcendental subject is not an entity, but a set of conditions making science possible [Meillassoux]
     Full Idea: The transcendental subject simply cannot be said to exist; which is to say that the subject is not an entity, but rather a set of conditions rendering objective scientific knowledge of entities possible.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux treats this as part of the Kantian Disaster, which made an accurate account of the scientific revolution impossible for philosophers. Kant's ego seems to have primarily an epistemological role.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Studying biology presumes the laws of chemistry, and it could never contradict them [Friend]
     Full Idea: In the hierarchy of reduction, when we investigate questions in biology, we have to assume the laws of chemistry but not of economics. We could never find a law of biology that contradicted something in physics or in chemistry.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.1)
     A reaction: This spells out the idea that there is a direction of dependence between aspects of the world, though we should be cautious of talking about 'levels' (see Idea 7003). We cannot choose the direction in which reduction must go.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Concepts can be presented extensionally (as objects) or intensionally (as a characterization) [Friend]
     Full Idea: The extensional presentation of a concept is just a list of the objects falling under the concept. In contrast, an intensional presentation of a concept gives a characterization of the concept, which allows us to pick out which objects fall under it.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.4)
     A reaction: Logicians seem to favour the extensional view, because (in the standard view) sets are defined simply by their members, so concepts can be explained using sets. I take this to be a mistake. The intensional view seems obviously prior.
18. Thought / D. Concepts / 1. Concepts / b. Concepts in philosophy
Philosophy should merely give necessary and sufficient conditions for concept possession [Peacocke, by Machery]
     Full Idea: Peacocke's 'Simple Account' says philosophers should determine the necessary and sufficient conditions for possessing a concept, and psychologists should explain how the human mind meets these conditions.
     From: report of Christopher Peacocke (A Study of Concepts [1992]) by Edouard Machery - Doing Without Concepts 2
     A reaction: One can't restrict philosophy so easily. Psychologists could do that job themselves, and dump philosophy. Philosophy is interested in the role of concepts in meaning, experience and judgement. If psychologists can contribute to philosophy, fine.
Peacocke's account of possession of a concept depends on one view of counterfactuals [Peacocke, by Machery]
     Full Idea: Peacocke's method for discovering the possession conditions of concepts is committed to a specific account of counterfactual judgements - the Simulation Model (judgements we'd make if the antecedent were actual).
     From: report of Christopher Peacocke (A Study of Concepts [1992]) by Edouard Machery - Doing Without Concepts 2.3.4
     A reaction: Machery concludes that the Simulation Model is incorrect. This appears to be Edgington's theory of conditionals, though Machery doesn't mention her.
Peacocke's account separates psychology from philosophy, and is very sketchy [Machery on Peacocke]
     Full Idea: Peacocke's Simple Account fails to connect the psychology and philosophy of concepts, it subordinates psychology to specific field of philosophy, it is committed to analytic/synthetic, and (most important) its method is very sketchy.
     From: comment on Christopher Peacocke (A Study of Concepts [1992]) by Edouard Machery - Doing Without Concepts 2.3.5
     A reaction: Machery says Peacocke proposes a research programme, and he is not surprised that no one has every followed. Machery is a well-known champion of 'experimental philosophy', makes philosophy respond to the psychology.
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Possessing a concept is being able to make judgements which use it [Peacocke]
     Full Idea: Possession of any concept requires the capacity to make judgements whose content contain it.
     From: Christopher Peacocke (A Study of Concepts [1992], 2.1)
     A reaction: Idea 12575 suggested that concept possession was an ability just to think about the concept. Why add that one must actually be able to make a judgement? Presumably to get truth in there somewhere. I may only speculate and fantasise, rather than judge.
A concept is just what it is to possess that concept [Peacocke]
     Full Idea: There can be no more to a concept than is determined by a correct account of what it is to possess that concept.
     From: Christopher Peacocke (A Study of Concepts [1992], 3.2)
     A reaction: He calls this the Principle of Dependence. An odd idea, if you compare 'there is no more to a book than its possession conditions'. If the principle is right, I struggle with the proposal that a philosopher might demonstrate such a principle.
Employing a concept isn't decided by introspection, but by making judgements using it [Peacocke]
     Full Idea: On the account I have been developing, what makes it the case that someone is employing one concept rather than another is not constituted by his impression of whether he is, but by complex facts about explanations of his judgements.
     From: Christopher Peacocke (A Study of Concepts [1992], 7.2)
     A reaction: I presume this brings truth into the picture, and hence establishes a link between the concept and the external world, rather than merely with other concepts. There seems to be a shadowy behaviourism lurking in the background.
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
An analysis of concepts must link them to something unconceptualized [Peacocke]
     Full Idea: At some point a good account of conceptual mastery must tie the mastery to abilities and relations that do not require conceptualization by the thinker.
     From: Christopher Peacocke (A Study of Concepts [1992], 5.3)
     A reaction: This obviously implies a physicalist commitment. Peacocke seeks, as so many do these days in philosophy of maths, to combine this commitment with some sort of Fregean "platonism without tears" (p.101). I don't buy it.
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
Concepts are constituted by their role in a group of propositions to which we are committed [Peacocke, by Greco]
     Full Idea: Peacocke argues that it may be a condition of possessing a certain concept that one be fundamentally committed to certain propositions which contain it. A concept is constituted by playing a specific role in the cognitive economy of its possessor.
     From: report of Christopher Peacocke (A Study of Concepts [1992]) by John Greco - Justification is not Internal §9
     A reaction: Peacocke is talking about thought and propositions rather than language. Good for him. I always have problems with this sort of view: how can something play a role if it doesn't already have intrinsic properties to make the role possible?
19. Language / B. Reference / 1. Reference theories
A concept's reference is what makes true the beliefs of its possession conditions [Peacocke, by Horwich]
     Full Idea: Peacocke has a distinctive view of reference: The reference of a concept is that which will make true the primitively compelling beliefs that provide its possession conditions.
     From: report of Christopher Peacocke (A Study of Concepts [1992]) by Paul Horwich - Stipulation, Meaning and Apriority §9
     A reaction: The first thought is that there might occasionally be more than one referent which would do the job. It seems to be a very internal view of reference, where I take reference to be much more contextual and social.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If the laws of nature are contingent, shouldn't we already have noticed it? [Meillassoux]
     Full Idea: The standard objection is that if the laws of nature were actually contingent, we would already have noticed it.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Meillassoux offers a sustained argument that the laws of nature are necessarily contingent. In Idea 19660 he distinguishes contingencies that must change from those that merely could change.
Why are contingent laws of nature stable? [Meillassoux]
     Full Idea: We must ask how we are to explain the manifest stability of physical laws, given that we take these to be contingent?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Meissalloux offers a very deep and subtle answer to this question... It is based on the possibilities of chaos being an uncountable infinity... It is a very nice question, which physicists might be able to answer, without help from philosophy.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
The ontological proof of a necessary God ensures a reality external to the mind [Meillassoux]
     Full Idea: Since Descartes conceives of God as existing necessarily, whether I exist to think of him or not, Descartes assures me of a possible access to an absolute reality - a Great Outdoors that is not a correlate of my thought.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: His point is that the ontological argument should be seen as part of the scientific revolution, and not an anomaly within it. Interesting.
28. God / C. Attitudes to God / 5. Atheism
Now that the absolute is unthinkable, even atheism is just another religious belief (though nihilist) [Meillassoux]
     Full Idea: Once the absolute has become unthinkable, even atheism, which also targets God's inexistence in the manner of an absolute, is reduced to a mere belief, and hence to a religion, albeit of the nihilist kind.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: An interesting claim. Rather hard to agree or disagree, though the idea that atheism must qualify as a religion seems odd. If it is unqualified it does have the grand quality of a religion, but if it is fallibilist it just seems like an attitude.