Combining Texts

All the ideas for 'After Finitude', 'talk' and 'The Big Book of Concepts'

unexpand these ideas     |    start again     |     specify just one area for these texts


50 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Since Kant we think we can only access 'correlations' between thinking and being [Meillassoux]
     Full Idea: The central notion of philosophy since Kant is 'correlation' - that we only ever have access to the correlation between thinking and being, and never to either term considered apart from the other.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux's charge is that philosophy has thereby completely failed to grasp the scientific revolution, which has used mathematics to make objectivity possible. Quine and Putnam would be good examples of what he has in mind.
The Copernican Revolution decentres the Earth, but also decentres thinking from reality [Meillassoux]
     Full Idea: The Copernican Revolution is not so much the decentring of observers in the solar system, but (by the mathematizing of nature) the decentring of thought relative to the world within the process of knowledge.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: In other words, I take it, the Copernican Revolution was the discovery of objectivity. That is a very nice addition to my History of Ideas collection.
1. Philosophy / B. History of Ideas / 6. Twentieth Century Thought
In Kant the thing-in-itself is unknowable, but for us it has become unthinkable [Meillassoux]
     Full Idea: The major shift that has occurred in the conception of thought from Kant's time to ours is from the unknowability of the thing-in-itself to its unthinkability.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: Meillassoux is making the case that philosophy is alienating us more and more from the triumphant realism of the scientific revolution. He says thinking has split from being. He's right. Modern American pragmatists are the worst (not Peirce!).
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Since Kant, philosophers have claimed to understand science better than scientists do [Meillassoux]
     Full Idea: Ever since Kant, to think science as a philosopher has been to claim that science harbours a meaning other than the one delivered by science itself.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: The point is that science discovered objectivity (via the mathematising of nature), and Kant utterly rejected objectivity, by enmeshing the human mind in every possible scientific claim. This makes Meillassoux and I very cross.
2. Reason / A. Nature of Reason / 5. Objectivity
Since Kant, objectivity is defined not by the object, but by the statement's potential universality [Meillassoux]
     Full Idea: Since Kant, objectivity is no longer defined with reference to the object in itself, but rather with reference to the possible universality of an objective statement.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux disapproves of this, as a betrayal by philosophers of the scientific revolution, which gave us true objectivity (e.g. about how the world was before humanity).
2. Reason / B. Laws of Thought / 2. Sufficient Reason
If we insist on Sufficient Reason the world will always be a mystery to us [Meillassoux]
     Full Idea: So long as we continue to believe that there is a reason why things are the way they are rather than some other way, we will construe this world is a mystery, since no such reason will every be vouchsafed to us.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Giving up sufficient reason sounds like a rather drastic response to this. Put it like this: Will we ever be able to explain absolutely everything? No. So will the world always be a little mysterious to us? Yes, obviously. Is that a problem? No!
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction is unjustified, so it only reveals a fact about thinking, not about reality? [Meillassoux]
     Full Idea: The principle of non-contradiction itself is without reason, and consequently it can only be the norm for what is thinkable by us, rather than for what is possible in the absolute sense.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: This is not Meillassoux's view, but describes the modern heresy of 'correlationism', which ties all assessments of how reality is to our capacity to think about it. Personally I take logical non-contradiction to derive from non-contradiction in nature.
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
We can allow contradictions in thought, but not inconsistency [Meillassoux]
     Full Idea: For contemporary logicians, it is not non-contradiction that provides the criterion for what is thinkable, but rather inconsistency.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: The point is that para-consistent logic might permit isolated contradictions (as true) within a system, but it is only contradiction across the system (inconsistencies) which make the system untenable.
Paraconsistent logics are to prevent computers crashing when data conflicts [Meillassoux]
     Full Idea: Paraconsistent logics were only developed in order to prevent computers, such as expert medical systems, from deducing anything whatsoever from contradictory data, because of the principle of 'ex falso quodlibet'.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
Paraconsistent logic is about statements, not about contradictions in reality [Meillassoux]
     Full Idea: Paraconsistent logics are only ever dealing with contradictions inherent in statements about the world, never with the real contradictions in the world.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: Thank goodness for that! I can accept that someone in a doorway is both in the room and not in the room, but not that they are existing in a real state of contradiction. I fear that a few daft people embrace the logic as confirming contradictory reality.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
What is mathematically conceivable is absolutely possible [Meillassoux]
     Full Idea: We must establish the thesis that what is mathematically conceivable is absolutely possible.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: The truth of this thesis would permanently establish mathematics as the only possible language of science. Personally I have no idea how you could prove or assess such a thesis. It is a lovely speculation, though. 'The structure of the possible' (p,127)
7. Existence / A. Nature of Existence / 1. Nature of Existence
The absolute is the impossibility of there being a necessary existent [Meillassoux]
     Full Idea: We maintain that it is absolutely necessary that every entity might not exist. ...The absolute is the absolute impossibility of a necessary being.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: This is the main thesis of his book. The usual candidates for necessary existence are God, and mathematical objects. I am inclined to agree with Meillassoux.
7. Existence / A. Nature of Existence / 5. Reason for Existence
It is necessarily contingent that there is one thing rather than another - so something must exist [Meillassoux]
     Full Idea: It is necessary that there be something rather than nothing because it is necessarily contingent that there is something rather than something else.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: The great charm of metaphysics is the array of serious answers to the question of why there is something rather than nothing. You'll need to read Meillassoux's book to understand this one.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
We must give up the modern criterion of existence, which is a correlation between thought and being [Meillassoux]
     Full Idea: It is incumbent upon us to break with the ontological requisite of the moderns, according to which 'to be is to be a correlate'.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: He blames Kant for this pernicious idea, which has driven philosophy away from realist science, when it should be supporting and joining it. As a realist I agree, and find Meillassoux very illuminating on the subject.
10. Modality / B. Possibility / 5. Contingency
Possible non-being which must be realised is 'precariousness'; absolute contingency might never not-be [Meillassoux]
     Full Idea: My term 'precariousness' designates a possibility of not-being which must eventually be realised. By contrast, absolute contingency designates a pure possibility; one which may never be realised.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: I thoroughly approve of this distinction, because I have often enountered the assumption that all contingency is precariousness, and I have never seen why that should be so. In Aquinas's Third Way, for example. The 6 on a die may never come up.
10. Modality / B. Possibility / 7. Chance
The idea of chance relies on unalterable physical laws [Meillassoux]
     Full Idea: The very notion of chance is only conceivable on condition that there are unalterable physical laws.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Laws might be contingent, even though they never alter. Chance in horse racing relies on the stability of whole institution of horse racing.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Unlike speculative idealism, transcendental idealism assumes the mind is embodied [Meillassoux]
     Full Idea: What distinguishes transcendental idealism from speculative idealism is the fact that the former does not posit the existence of the transcendental subject apart from its bodily individuation.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: These modern French philosophers explain things so much more clearly than the English! The 'speculative' version is seen in Berkeley. On p.17 he says transcendental idealism is 'civilised', and speculative idealism is 'uncouth'.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
The aspects of objects that can be mathematical allow it to have objective properties [Meillassoux]
     Full Idea: All aspects of the object that can give rise to a mathematical thought rather than to a perception or a sensation can be meaningfully turned into the properties of the thing not only as it is with me, but also as it is without me.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: This is Meillassoux's spin on the primary/secondary distinction, which he places at the heart of the scientific revolution. Cartesian dualism offers a separate space for the secondary qualities. He is appalled when philosophers reject the distinction.
12. Knowledge Sources / B. Perception / 5. Interpretation
Research shows perceptual discrimination is sharper at category boundaries [Murphy]
     Full Idea: Goldstone's research has shown how learning concepts can change perceptual units. For example, perceptual discrimination is heightened along category boundaries.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: [Goldstone 1994, 2000] This is just the sort of research which throws a spanner into the simplistic a priori thinking of many philosophers.
14. Science / B. Scientific Theories / 1. Scientific Theory
How can we mathematically describe a world that lacks humans? [Meillassoux]
     Full Idea: How is mathematical discourse able to describe a reality where humanity is absent?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: He is referring to the prehistoric world. He takes this to be a key question about the laws of nature. We extrapolate mathematically from the experienced world, relying on the stability of the laws. Must they be necessary to be stable? No, it seems.
14. Science / C. Induction / 1. Induction
Induction is said to just compare properties of categories, but the type of property also matters [Murphy]
     Full Idea: Most theories of induction claim that it should depend primarily on the similarity of the categories involved, but then the type of property should not matter, yet research shows that it does.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: I take this to be good empirical support for Gilbert Harman's view that induction is really inference to the best explanation. The thought (which strikes me as obviously correct) is that we bring nested domains of knowledge to bear in induction.
14. Science / C. Induction / 3. Limits of Induction
Hume's question is whether experimental science will still be valid tomorrow [Meillassoux]
     Full Idea: Hume's question can be formulated as follows: can we demonstrate that the experimental science which is possible today will still be possible tomorrow?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Could there be deep universal changes going on in nature which science could never, even in principle, detect?
15. Nature of Minds / B. Features of Minds / 5. Qualia / b. Qualia and intentionality
Maybe lots of qualia lead to intentionality, rather than intentionality being basic [Gildersleve]
     Full Idea: A common modern reductive view of the mind is that a hierarchy of intentional systems eventually produce qualia, but it might be the other way around. The mind is 'qualia-upon-qualia', with units of minimal qualia building up into intentional thought.
     From: Harry Gildersleve (talk [2005]), quoted by PG - Db (ideas)
     A reaction: If qualia are seen as existing at the most basic level of the brain, this may well imply panpsychism. It certainly says that basic brain cells are capable of minimal experiences. The idea that thought is essentially qualitative is very intriguing.
16. Persons / B. Nature of the Self / 4. Presupposition of Self
The transcendental subject is not an entity, but a set of conditions making science possible [Meillassoux]
     Full Idea: The transcendental subject simply cannot be said to exist; which is to say that the subject is not an entity, but rather a set of conditions rendering objective scientific knowledge of entities possible.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux treats this as part of the Kantian Disaster, which made an accurate account of the scientific revolution impossible for philosophers. Kant's ego seems to have primarily an epistemological role.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
The main theories of concepts are exemplar, prototype and knowledge [Murphy]
     Full Idea: The three main theories of concepts under consideration are the exemplar, the prototype and the knowledge approaches.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The theoretical and practical definitions for the classical view are very hard to find [Murphy]
     Full Idea: It has been extremely difficult to find definitions for most natural categories, and even harder to find definitions that are plausible psychological representations that people of all ages would be likely to use.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
The classical definitional approach cannot distinguish typical and atypical category members [Murphy]
     Full Idea: The early psychological approaches to concepts took a definitional approach. ...but this view does not have any way of distinguishing typical and atypical category members (...as when a trout is a typical fish and an eel an atypical one).
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
     A reaction: [pp. 12 and 22] Eleanor Rosch in the 1970s is said to have largely killed off the classical view.
Classical concepts follow classical logic, but concepts in real life don't work that way [Murphy]
     Full Idea: The classical view of concepts has been tied to traditional logic. 'Fido is a dog and a pet' is true if it has the necessary and sufficient conditions for both, ...but there is empirical evidence that people do not follow that rule.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
     A reaction: Examples given are classifying chess as a sport and/or game, and classifying a tree house (which is agreed to be both a building and not a building!).
Classical concepts are transitive hierarchies, but actual categories may be intransitive [Murphy]
     Full Idea: The classical view of concepts explains hierarchical order, where categories form nested sets. But research shows that categories are often not transitive. Research shows that a seat is furniture, and a car seat is a seat, but it is not furniture.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
     A reaction: [compressed] Murphy adds that the nesting of definitions is classically used to match the nesting of hierarchies. This is a nice example of the neatness of the analytic philosopher breaking down when it meets the mess of the world.
The classical core is meant to be the real concept, but actually seems unimportant [Murphy]
     Full Idea: A problem with the revised classical view is that the concept core does not seem to be an important part of the concept, despite its name and theoretical intention as representing the 'real' concept.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
     A reaction: Apparently most researchers feel they can explain their results without reference to any core. Not so fast, I would say (being an essentialist). Maybe people acknowledge an implicit core without knowing what it is. See Susan Gelman.
18. Thought / D. Concepts / 4. Structure of Concepts / d. Concepts as prototypes
There is no 'ideal' bird or dog, and prototypes give no information about variability [Murphy]
     Full Idea: Is there really an 'ideal bird' that could represent all birds? ...Furthermore a single prototype would give no information about the variability of a category. ...Compare the incredible variety of dogs to the much smaller diversity of cats.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 3)
     A reaction: The point about variability is particularly noteworthy. You only grasp the concept of 'furniture' when you understand its range, as well as its typical examples. What structure is needed in a concept to achieve this?
Prototypes are unified representations of the entire category (rather than of members) [Murphy]
     Full Idea: In the prototype view the entire category is represented by a unified representation rather than separate representations for each member, or for different classes of members.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 3)
     A reaction: This is the improved prototype view, as opposed to the implausible idea that there is one ideal exemplar. The new theory still have the problem of how to represent diversity within the category, while somehow remaining 'unified'.
The prototype theory uses observed features, but can't include their construction [Murphy]
     Full Idea: Nothing in the prototype model says the shape of an animal is more important than its location in identifying its kind. The theory does not provide a way the features can be constructed, rather than just observed.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: This makes some kind of mental modelling central to thought, and not just a bonus once you have empirically acquired the concepts. We bring our full range of experience to bear on even the most instantaneous observations.
The prototype theory handles hierarchical categories and combinations of concepts well [Murphy]
     Full Idea: The prototype view has no trouble with either hierarchical structure or explaining categories. ...Meaning and conceptual combination provide strong evidence for prototypes.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: Prototypes are not vague, making clearer classification possible. A 'mountain lion' is clear, because its components are clear.
Prototypes theory of concepts is best, as a full description with weighted typical features [Murphy]
     Full Idea: Our theory of concepts must be primarily prototype-based. That is, it must be a description of an entire concept, with its typical features (presumably weighted by their importance).
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: This is to be distinguished from the discredited 'classical' view of concepts, that the concept consists of its definition. I take Aristotle's account of definition to be closer to a prototype description than to a dictionary definition.
Learning concepts is forming prototypes with a knowledge structure [Murphy]
     Full Idea: My proposal is that people attempt to form prototypes as part of a larger knowledge structure when they learn concepts.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: This combines theory theory (knowledge) with the prototype view, and sounds rather persuasive. The formation of prototypes fits with the explanatory account of essentialism I am defending. He later calls prototype formation 'abstraction' (494).
18. Thought / D. Concepts / 4. Structure of Concepts / e. Concepts from exemplars
The most popular theories of concepts are based on prototypes or exemplars [Murphy]
     Full Idea: The most popular theories of concepts are based on prototype or exemplar theories that are strongly unclassical.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 2)
The exemplar view of concepts says 'dogs' is the set of dogs I remember [Murphy]
     Full Idea: In the exemplar view of concepts, the idea that people have a representation that somehow encompasses an entire concept is rejected. ...Instead a person's concept of dogs is the set of dogs that the person remembers.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 3)
     A reaction: [The theory was introduced by Medin and Schaffer 1978] I think I have finally met a plausible theory of concepts. When I think 'dog' I conjure up a fuzz of dogs that exhibit the range I have encountered (e.g. tiny to very big). Individuals come first!
Exemplar theory struggles with hierarchical classification and with induction [Murphy]
     Full Idea: The exemplar view has trouble with hierarchical classification and with induction in adults.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: To me these both strongly support essentialism - that you form the concept 'dog' from seeing some dogs, but you then extrapolate to large categories and general truths about dogs, on the assumption of the natures of the dogs you have seen.
Children using knowing and essentialist categories doesn't fit the exemplar view [Murphy]
     Full Idea: The findings showing that children use knowledge and may be essentialist about category membership do not comport well with the exemplar view.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: Tricky, because Gelman persuaded me of the essentialism, but the exemplar view of concepts looks the most promising. Clearly they must be forced to coexist....
Conceptual combination must be compositional, and can't be built up from exemplars [Murphy]
     Full Idea: The exemplar accounts of conceptual combination are demonstrably wrong, because the meaning of a phrase has to be composed from the meaning of its parts (plus broader knowledge), and it cannot be composed as a function of exemplars.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: This sounds quite persuasive, and I begin to see that my favoured essentialism fits the prototype view of concepts best, though this mustn't be interpreted too crudely. We change our prototypes with experience. 'Bird' is a tricky case.
The concept of birds from exemplars must also be used in inductions about birds [Murphy]
     Full Idea: We don't have one concept of birds formed by learning from exemplars, and another concept of birds that is used in induction.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch.13)
     A reaction: In other words exemplar concepts break down when we generalise using the concept. The exemplars must be unified, to be usable in thought and language.
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
We do not learn concepts in isolation, but as an integrated part of broader knowledge [Murphy]
     Full Idea: The knowledge approach argues that concepts are part of our general knowledge about the world. We do not learn concepts in isolation, ...but as part of our overall understanding of the world. Animal concepts are integrated with biology, behaviour etc.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 3)
     A reaction: This is one of the leading theories of concepts among psychologists. It seems to be an aspect of the true theory, but it needs underpinning with some account of isolated individual concepts. This is also known as the 'theory theory'.
Concepts with familiar contents are easier to learn [Murphy]
     Full Idea: A concept's content influences how easy it is to learn. If the concept is grossly incompatible with what people know prior to the experiment, it will be difficult to acquire.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: This is a preliminary fact which leads towards the 'knowledge' theory of concepts (aka 'theory theory'). The point being that the knowledge involved is integral to the concept. Fits my preferred mental files approach.
Some knowledge is involved in instant use of categories, other knowledge in explanations [Murphy]
     Full Idea: Some kinds of knowledge are probably directly incorporated into the category representation and used in normal, fast decisions about objects. Other kinds of knowledge, however, may come into play only when it has been solicited.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: This is a summary of empirical research, but seems to fit our normal experience. If you see a hawk, you have some instant understanding, but if you ask what the hawk is doing here, you draw more widely.
People categorise things consistent with their knowledge, even rejecting some good evidence [Murphy]
     Full Idea: People tend to positively categorise items that are consistent with their knowledge and to exclude items that are inconsistent, sometimes even overruling purely empirical sources of information.
     From: Gregory L. Murphy (The Big Book of Concepts [2004], Ch. 6)
     A reaction: The main rival to 'theory theory' is the purely empirical account of how concepts are acquired. This idea reports empirical research in favour of the theory theory (or 'knowledge') approach.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If the laws of nature are contingent, shouldn't we already have noticed it? [Meillassoux]
     Full Idea: The standard objection is that if the laws of nature were actually contingent, we would already have noticed it.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Meillassoux offers a sustained argument that the laws of nature are necessarily contingent. In Idea 19660 he distinguishes contingencies that must change from those that merely could change.
Why are contingent laws of nature stable? [Meillassoux]
     Full Idea: We must ask how we are to explain the manifest stability of physical laws, given that we take these to be contingent?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Meissalloux offers a very deep and subtle answer to this question... It is based on the possibilities of chaos being an uncountable infinity... It is a very nice question, which physicists might be able to answer, without help from philosophy.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
The ontological proof of a necessary God ensures a reality external to the mind [Meillassoux]
     Full Idea: Since Descartes conceives of God as existing necessarily, whether I exist to think of him or not, Descartes assures me of a possible access to an absolute reality - a Great Outdoors that is not a correlate of my thought.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: His point is that the ontological argument should be seen as part of the scientific revolution, and not an anomaly within it. Interesting.
28. God / C. Attitudes to God / 5. Atheism
Now that the absolute is unthinkable, even atheism is just another religious belief (though nihilist) [Meillassoux]
     Full Idea: Once the absolute has become unthinkable, even atheism, which also targets God's inexistence in the manner of an absolute, is reduced to a mere belief, and hence to a religion, albeit of the nihilist kind.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: An interesting claim. Rather hard to agree or disagree, though the idea that atheism must qualify as a religion seems odd. If it is unqualified it does have the grand quality of a religion, but if it is fallibilist it just seems like an attitude.