Combining Texts

All the ideas for 'After Finitude', 'What Required for Foundation for Maths?' and 'Intro to 'Communitarianism and Individualism''

unexpand these ideas     |    start again     |     specify just one area for these texts


61 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Since Kant we think we can only access 'correlations' between thinking and being [Meillassoux]
     Full Idea: The central notion of philosophy since Kant is 'correlation' - that we only ever have access to the correlation between thinking and being, and never to either term considered apart from the other.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux's charge is that philosophy has thereby completely failed to grasp the scientific revolution, which has used mathematics to make objectivity possible. Quine and Putnam would be good examples of what he has in mind.
The Copernican Revolution decentres the Earth, but also decentres thinking from reality [Meillassoux]
     Full Idea: The Copernican Revolution is not so much the decentring of observers in the solar system, but (by the mathematizing of nature) the decentring of thought relative to the world within the process of knowledge.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: In other words, I take it, the Copernican Revolution was the discovery of objectivity. That is a very nice addition to my History of Ideas collection.
1. Philosophy / B. History of Ideas / 6. Twentieth Century Thought
In Kant the thing-in-itself is unknowable, but for us it has become unthinkable [Meillassoux]
     Full Idea: The major shift that has occurred in the conception of thought from Kant's time to ours is from the unknowability of the thing-in-itself to its unthinkability.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: Meillassoux is making the case that philosophy is alienating us more and more from the triumphant realism of the scientific revolution. He says thinking has split from being. He's right. Modern American pragmatists are the worst (not Peirce!).
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Since Kant, philosophers have claimed to understand science better than scientists do [Meillassoux]
     Full Idea: Ever since Kant, to think science as a philosopher has been to claim that science harbours a meaning other than the one delivered by science itself.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: The point is that science discovered objectivity (via the mathematising of nature), and Kant utterly rejected objectivity, by enmeshing the human mind in every possible scientific claim. This makes Meillassoux and I very cross.
2. Reason / A. Nature of Reason / 5. Objectivity
Since Kant, objectivity is defined not by the object, but by the statement's potential universality [Meillassoux]
     Full Idea: Since Kant, objectivity is no longer defined with reference to the object in itself, but rather with reference to the possible universality of an objective statement.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux disapproves of this, as a betrayal by philosophers of the scientific revolution, which gave us true objectivity (e.g. about how the world was before humanity).
2. Reason / B. Laws of Thought / 2. Sufficient Reason
If we insist on Sufficient Reason the world will always be a mystery to us [Meillassoux]
     Full Idea: So long as we continue to believe that there is a reason why things are the way they are rather than some other way, we will construe this world is a mystery, since no such reason will every be vouchsafed to us.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Giving up sufficient reason sounds like a rather drastic response to this. Put it like this: Will we ever be able to explain absolutely everything? No. So will the world always be a little mysterious to us? Yes, obviously. Is that a problem? No!
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction is unjustified, so it only reveals a fact about thinking, not about reality? [Meillassoux]
     Full Idea: The principle of non-contradiction itself is without reason, and consequently it can only be the norm for what is thinkable by us, rather than for what is possible in the absolute sense.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: This is not Meillassoux's view, but describes the modern heresy of 'correlationism', which ties all assessments of how reality is to our capacity to think about it. Personally I take logical non-contradiction to derive from non-contradiction in nature.
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
We can allow contradictions in thought, but not inconsistency [Meillassoux]
     Full Idea: For contemporary logicians, it is not non-contradiction that provides the criterion for what is thinkable, but rather inconsistency.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: The point is that para-consistent logic might permit isolated contradictions (as true) within a system, but it is only contradiction across the system (inconsistencies) which make the system untenable.
Paraconsistent logics are to prevent computers crashing when data conflicts [Meillassoux]
     Full Idea: Paraconsistent logics were only developed in order to prevent computers, such as expert medical systems, from deducing anything whatsoever from contradictory data, because of the principle of 'ex falso quodlibet'.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
Paraconsistent logic is about statements, not about contradictions in reality [Meillassoux]
     Full Idea: Paraconsistent logics are only ever dealing with contradictions inherent in statements about the world, never with the real contradictions in the world.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: Thank goodness for that! I can accept that someone in a doorway is both in the room and not in the room, but not that they are existing in a real state of contradiction. I fear that a few daft people embrace the logic as confirming contradictory reality.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
What is mathematically conceivable is absolutely possible [Meillassoux]
     Full Idea: We must establish the thesis that what is mathematically conceivable is absolutely possible.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: The truth of this thesis would permanently establish mathematics as the only possible language of science. Personally I have no idea how you could prove or assess such a thesis. It is a lovely speculation, though. 'The structure of the possible' (p,127)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
7. Existence / A. Nature of Existence / 1. Nature of Existence
The absolute is the impossibility of there being a necessary existent [Meillassoux]
     Full Idea: We maintain that it is absolutely necessary that every entity might not exist. ...The absolute is the absolute impossibility of a necessary being.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: This is the main thesis of his book. The usual candidates for necessary existence are God, and mathematical objects. I am inclined to agree with Meillassoux.
7. Existence / A. Nature of Existence / 5. Reason for Existence
It is necessarily contingent that there is one thing rather than another - so something must exist [Meillassoux]
     Full Idea: It is necessary that there be something rather than nothing because it is necessarily contingent that there is something rather than something else.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: The great charm of metaphysics is the array of serious answers to the question of why there is something rather than nothing. You'll need to read Meillassoux's book to understand this one.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
We must give up the modern criterion of existence, which is a correlation between thought and being [Meillassoux]
     Full Idea: It is incumbent upon us to break with the ontological requisite of the moderns, according to which 'to be is to be a correlate'.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: He blames Kant for this pernicious idea, which has driven philosophy away from realist science, when it should be supporting and joining it. As a realist I agree, and find Meillassoux very illuminating on the subject.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
10. Modality / B. Possibility / 5. Contingency
Possible non-being which must be realised is 'precariousness'; absolute contingency might never not-be [Meillassoux]
     Full Idea: My term 'precariousness' designates a possibility of not-being which must eventually be realised. By contrast, absolute contingency designates a pure possibility; one which may never be realised.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: I thoroughly approve of this distinction, because I have often enountered the assumption that all contingency is precariousness, and I have never seen why that should be so. In Aquinas's Third Way, for example. The 6 on a die may never come up.
10. Modality / B. Possibility / 7. Chance
The idea of chance relies on unalterable physical laws [Meillassoux]
     Full Idea: The very notion of chance is only conceivable on condition that there are unalterable physical laws.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Laws might be contingent, even though they never alter. Chance in horse racing relies on the stability of whole institution of horse racing.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Unlike speculative idealism, transcendental idealism assumes the mind is embodied [Meillassoux]
     Full Idea: What distinguishes transcendental idealism from speculative idealism is the fact that the former does not posit the existence of the transcendental subject apart from its bodily individuation.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: These modern French philosophers explain things so much more clearly than the English! The 'speculative' version is seen in Berkeley. On p.17 he says transcendental idealism is 'civilised', and speculative idealism is 'uncouth'.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
The aspects of objects that can be mathematical allow it to have objective properties [Meillassoux]
     Full Idea: All aspects of the object that can give rise to a mathematical thought rather than to a perception or a sensation can be meaningfully turned into the properties of the thing not only as it is with me, but also as it is without me.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: This is Meillassoux's spin on the primary/secondary distinction, which he places at the heart of the scientific revolution. Cartesian dualism offers a separate space for the secondary qualities. He is appalled when philosophers reject the distinction.
14. Science / B. Scientific Theories / 1. Scientific Theory
How can we mathematically describe a world that lacks humans? [Meillassoux]
     Full Idea: How is mathematical discourse able to describe a reality where humanity is absent?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: He is referring to the prehistoric world. He takes this to be a key question about the laws of nature. We extrapolate mathematically from the experienced world, relying on the stability of the laws. Must they be necessary to be stable? No, it seems.
14. Science / C. Induction / 3. Limits of Induction
Hume's question is whether experimental science will still be valid tomorrow [Meillassoux]
     Full Idea: Hume's question can be formulated as follows: can we demonstrate that the experimental science which is possible today will still be possible tomorrow?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Could there be deep universal changes going on in nature which science could never, even in principle, detect?
16. Persons / B. Nature of the Self / 4. Presupposition of Self
The transcendental subject is not an entity, but a set of conditions making science possible [Meillassoux]
     Full Idea: The transcendental subject simply cannot be said to exist; which is to say that the subject is not an entity, but rather a set of conditions rendering objective scientific knowledge of entities possible.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux treats this as part of the Kantian Disaster, which made an accurate account of the scientific revolution impossible for philosophers. Kant's ego seems to have primarily an epistemological role.
24. Political Theory / D. Ideologies / 6. Liberalism / a. Liberalism basics
Liberalism is minimal government, or individual rights, or equality [Avineri/De-Shalit]
     Full Idea: Liberalism has been defended as a theory of minimal government, or as a theory of basic individual rights, or as an egalitarian philosophy.
     From: Avineri,S/De-Shalit,A (Intro to 'Communitarianism and Individualism' [1992], §5)
     A reaction: Minimal government tends towards anarchist liberalism, but then what grounds the right to be free of government? Presumably any sensible theory of rights has to be egalitarian. What could ground unequal rights?
24. Political Theory / D. Ideologies / 6. Liberalism / g. Liberalism critique
Can individualist theories justify an obligation to fight in a war? [Avineri/De-Shalit]
     Full Idea: How can an individualist theory justify an obligation to fight for the state in the case of war?
     From: Avineri,S/De-Shalit,A (Intro to 'Communitarianism and Individualism' [1992], §4)
     A reaction: The most dramatic example of obliging citizens to contribute to the state, the notable other case being taxes. Some imagined ancient 'social contract' doesn't seem sufficient for later generations. Does being naturally sociable create such obligations?
24. Political Theory / D. Ideologies / 7. Communitarianism / a. Communitarianism
Autonomy is better achieved within a community [Avineri/De-Shalit]
     Full Idea: Communitarians often argue that personal autonomy is better achieved within the community.
     From: Avineri,S/De-Shalit,A (Intro to 'Communitarianism and Individualism' [1992], §4)
     A reaction: Hegel is the source of this view. The simplest version of the point is that autonomy can only be asserted if a person has rights, which can be asserted and defended, and only a society can provide that. That is plausible.
Communitarians avoid oppression for the common good, by means of small mediating communities [Avineri/De-Shalit]
     Full Idea: Because of the mediating structures of small communities, communitarians are less fearful [than liberals] of the emergence of an oppressive government as a result of the politics of the common good.
     From: Avineri,S/De-Shalit,A (Intro to 'Communitarianism and Individualism' [1992], §5)
     A reaction: A politics of the common good has an obvious implicit conservatism because the central consensus is always likely to disapprove of errant individuals, of all sorts. Only individual rights can block an oppressive government.
24. Political Theory / D. Ideologies / 7. Communitarianism / b. Against communitarianism
If our values are given to us by society then we have no grounds to criticise them [Avineri/De-Shalit]
     Full Idea: If communitarians are right that we are not free to choose, but rather that our values are determined by our community, the individualists say, then there is no reason to criticise the values of one's society.
     From: Avineri,S/De-Shalit,A (Intro to 'Communitarianism and Individualism' [1992], §5)
     A reaction: This is an obvious challenge, but if one's concept of community is a forum for free debate then it can be overcome. There is no avoiding the fact, though, that a good community always needs a high degree of consensus.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If the laws of nature are contingent, shouldn't we already have noticed it? [Meillassoux]
     Full Idea: The standard objection is that if the laws of nature were actually contingent, we would already have noticed it.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Meillassoux offers a sustained argument that the laws of nature are necessarily contingent. In Idea 19660 he distinguishes contingencies that must change from those that merely could change.
Why are contingent laws of nature stable? [Meillassoux]
     Full Idea: We must ask how we are to explain the manifest stability of physical laws, given that we take these to be contingent?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Meissalloux offers a very deep and subtle answer to this question... It is based on the possibilities of chaos being an uncountable infinity... It is a very nice question, which physicists might be able to answer, without help from philosophy.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
The ontological proof of a necessary God ensures a reality external to the mind [Meillassoux]
     Full Idea: Since Descartes conceives of God as existing necessarily, whether I exist to think of him or not, Descartes assures me of a possible access to an absolute reality - a Great Outdoors that is not a correlate of my thought.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: His point is that the ontological argument should be seen as part of the scientific revolution, and not an anomaly within it. Interesting.
28. God / C. Attitudes to God / 5. Atheism
Now that the absolute is unthinkable, even atheism is just another religious belief (though nihilist) [Meillassoux]
     Full Idea: Once the absolute has become unthinkable, even atheism, which also targets God's inexistence in the manner of an absolute, is reduced to a mere belief, and hence to a religion, albeit of the nihilist kind.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: An interesting claim. Rather hard to agree or disagree, though the idea that atheism must qualify as a religion seems odd. If it is unqualified it does have the grand quality of a religion, but if it is fallibilist it just seems like an attitude.