Combining Texts

All the ideas for 'Scientific Explanation', 'Leibniz' and 'works'

unexpand these ideas     |    start again     |     specify just one area for these texts


7 ideas

2. Reason / F. Fallacies / 4. Circularity
One sort of circularity presupposes a premise, the other presupposes a rule being used [Braithwaite, by Devitt]
     Full Idea: An argument is 'premise-circular' if it aims to establish a conclusion that is assumed as a premise of that very argument. An argument is 'rule-circular' if it aims to establish a conclusion that asserts the goodness of the rule used in that argument.
     From: report of R.B. Braithwaite (Scientific Explanation [1953], p.274-8) by Michael Devitt - There is no a Priori §2
     A reaction: Rule circularity is the sort of thing Quine is always objecting to, but such circularities may be unavoidable, and even totally benign. All the good things in life form a mutually supporting team.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Gentzen introduced a natural deduction calculus (NK) in 1934 [Gentzen, by Read]
     Full Idea: Gentzen introduced a natural deduction calculus (NK) in 1934.
     From: report of Gerhard Gentzen (works [1938]) by Stephen Read - Thinking About Logic Ch.8
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The inferential role of a logical constant constitutes its meaning [Gentzen, by Hanna]
     Full Idea: Gentzen argued that the inferential role of a logical constant constitutes its meaning.
     From: report of Gerhard Gentzen (works [1938]) by Robert Hanna - Rationality and Logic 5.3
     A reaction: Possibly inspired by Wittgenstein's theory of meaning as use? This idea was the target of Prior's famous connective 'tonk', which has the role of implying anything you like, proving sentences which are not logical consequences.
The logical connectives are 'defined' by their introduction rules [Gentzen]
     Full Idea: The introduction rules represent, as it were, the 'definitions' of the symbols concerned, and the elimination rules are no more, in the final analysis, than the consequences of these definitions.
     From: Gerhard Gentzen (works [1938]), quoted by Stephen Read - Thinking About Logic Ch.8
     A reaction: If an introduction-rule (or a truth table) were taken as fixed and beyond dispute, then it would have the status of a definition, since there would be nothing else to appeal to. So is there anything else to appeal to here?
Each logical symbol has an 'introduction' rule to define it, and hence an 'elimination' rule [Gentzen]
     Full Idea: To every logical symbol there belongs precisely one inference figure which 'introduces' the symbol ..and one which 'eliminates' it. The introductions represent the 'definitions' of the symbols concerned, and eliminations are consequences of these.
     From: Gerhard Gentzen (works [1938], II.5.13), quoted by Ian Rumfitt - "Yes" and "No" III
     A reaction: [1935 paper] This passage is famous, in laying down the basics of natural deduction systems of logic (ones using only rules, and avoiding axioms). Rumfitt questions whether Gentzen's account gives the sense of the connectives.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gentzen proved the consistency of arithmetic from assumptions beyond arithmetic [Gentzen, by Musgrave]
     Full Idea: Gentzen proved the consistency of arithmetic from assumptions which transcend arithmetic.
     From: report of Gerhard Gentzen (works [1938]) by Alan Musgrave - Logicism Revisited §5
     A reaction: This does not contradict Gödel's famous result, but reinforces it. The interesting question is what assumptions Gentzen felt he had to make.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Identity of Indiscernibles is really the same as the verification principle [Jolley]
     Full Idea: Various writers have noted that the Identity of Indiscernibles is really tantamount to the verification principle.
     From: Nicholas Jolley (Leibniz [2005], Ch.3)
     A reaction: Both principles are false, because they are the classic confusion of epistemology and ontology. The fact that you cannot 'discern' a difference between two things doesn't mean that there is no difference. Things beyond verification can still be discussed.