Combining Texts

All the ideas for 'On Eternal and Immutable Morality', 'Axiomatic Theories of Truth' and 'The Evolution of Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


100 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
     Full Idea: We are all post-Kantians, ...because Kant set an agenda for philosophy that we are still working through.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Hart says that the main agenda is set by Kant's desire to defend the principle of sufficient reason against Hume's attack on causation. I would take it more generally to be the assessment of metaphysics, and of a priori knowledge.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
     Full Idea: The real monuments of philosophy are its problems.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Presumably he means '....rather than its solutions'. No other subject would be very happy with that sort of claim. Compare Idea 8243. A complaint against analytic philosophy is that it has achieved no consensus at all.
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Analysis rests on natural language, but its ideal is a framework which revises language [Halbach]
     Full Idea: For me, although the enterprise of philosophical analysis is driven by natural language, its goal is not a linguistic analysis of English but rather an expressively strong framework that may at best be seen as a revision of English.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 12)
     A reaction: I agree, but the problem is that there are different ideals for the revision, which may be in conflict. Logicians, mathematicians, metaphysicians, scientists, moralists and aestheticians are queueing up to improve in their own way.
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
     Full Idea: By now, no education in abstract pursuits is adequate without some familiarity with sets.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: A heart-sinking observation for those who aspire to study metaphysics and modality. The question is, what will count as 'some' familiarity? Are only professional logicians now allowed to be proper philosophers?
2. Reason / D. Definition / 2. Aims of Definition
An explicit definition enables the elimination of what is defined [Halbach]
     Full Idea: Explicit definitions allow for a complete elimination of the defined notion (at least in extensional contexts).
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 1)
     A reaction: If the context isn't extensional (concerning the things themselves) then we could define one description of it, but be unable to eliminate it under another description. Elimination is no the aim of an Aristotelian definition. Halbach refers to truth.
2. Reason / E. Argument / 3. Analogy
Don't trust analogies; they are no more than a guideline [Halbach]
     Full Idea: Arguments from analogy are to be distrusted: at best they can serve as heuristics.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 4)
3. Truth / A. Truth Problems / 1. Truth
Truth-value 'gluts' allow two truth values together; 'gaps' give a partial conception of truth [Halbach]
     Full Idea: Truth-value 'gluts' correspond to a so-called dialethic conception of truth; excluding gluts and admitting only 'gaps' leads to a conception of what is usually called 'partial' truth.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 15.2)
     A reaction: Talk of 'gaps' and 'gluts' seem to be the neatest way of categorising views of truth. I want a theory with no gaps or gluts.
Truth axioms prove objects exist, so truth doesn't seem to be a logical notion [Halbach]
     Full Idea: Two typed disquotation sentences, truth axioms of TB, suffice for proving that there at least two objects. Hence truth is not a logical notion if one expects logical notions to be ontologically neutral.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 21.2)
3. Truth / A. Truth Problems / 2. Defining Truth
Any definition of truth requires a metalanguage [Halbach]
     Full Idea: It is plain that the distinction between object and metalanguage is required for the definability of truth.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 11)
     A reaction: Halbach's axiomatic approach has given up on definability, and therefore it can seek to abandon the metalanguage and examine 'type-free' theories.
Traditional definitions of truth often make it more obscure, rather than less [Halbach]
     Full Idea: A common complaint against traditional definitional theories of truth is that it is far from clear that the definiens is not more in need of clarification than the definiendum (that is, the notion of truth).
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 1)
     A reaction: He refers to concepts like 'correspondence', 'facts', 'coherence' or 'utility', which are said to be trickier to understand than 'true'. I suspect that philosophers like Halbach confuse 'clear' with 'precise'. Coherence is quite clear, but imprecise.
If people have big doubts about truth, a definition might give it more credibility [Halbach]
     Full Idea: If one were wondering whether truth should be considered a legitimate notion at all, a definition might be useful in dispersing doubts about its legitimacy.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 3)
     A reaction: Halbach is proposing to skip definitions, and try to give rules for using 'true' instead, but he doesn't rule out definitions. A definition of 'knowledge' or 'virtue' or 'democracy' might equally give those credibility.
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
     Full Idea: It is an ancient and honourable view that truth is correspondence to fact; Tarski showed us how to do without facts here.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This is a very interesting spin on Tarski, who certainly seems to endorse the correspondence theory, even while apparently inventing a new 'semantic' theory of truth. It is controversial how far Tarski's theory really is a 'correspondence' theory.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
     Full Idea: We explain truth for sentences in terms of satisfaction of formulae. The crux here is that for a sentence, either all sequences satisfy it or none do (with no middle ground). For formulae, some sequences may satisfy it and others not.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This is the hardest part of Tarski's theory of truth to grasp.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories avoid Tarski's Theorem by sticking to a sublanguage [Halbach]
     Full Idea: In semantic theories (e.g.Tarski's or Kripke's), a definition evades Tarski's Theorem by restricting the possible instances in the schema T[φ]↔φ to sentences of a proper sublanguage of the language formulating the equivalences.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 1)
     A reaction: The schema says if it's true it's affirmable, and if it's affirmable it's true. The Liar Paradox is a key reason for imposing this restriction.
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
     Full Idea: In any first-order language, there are infinitely many T-sentences. Since definitions should be finite, the agglomeration of all the T-sentences is not a definition of truth.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This may be a warning shot aimed at Davidson's extensive use of Tarski's formal account in his own views on meaning in natural language.
Disquotational truth theories are short of deductive power [Halbach]
     Full Idea: The problem of restricted deductive power has haunted disquotational theories of truth (…because they can't prove generalisations).
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 19.5)
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
CT proves PA consistent, which PA can't do on its own, so CT is not conservative over PA [Halbach]
     Full Idea: Compositional Truth CT proves the consistency of Peano arithmetic, which is not provable in Peano arithmetic by Gödel's second incompleteness theorem. Hence the theory CT is not conservative over Peano arithmetic.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 8.6)
Axiomatic truth doesn't presuppose a truth-definition, though it could admit it at a later stage [Halbach]
     Full Idea: Choosing an axiomatic approach to truth might well be compatible with the view that truth is definable; the definability of truth is just not presupposed at the outset.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 1)
     A reaction: Is it possible that a successful axiomatisation is a successful definition?
The main semantic theories of truth are Kripke's theory, and revisions semantics [Halbach]
     Full Idea: Revision semantics is arguably the main competitor of Kripke's theory of truth among semantic truth theories. …In the former one may hope through revision to arrive at better and better models, ..sorting out unsuitable extensions of the truth predicate.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 14)
     A reaction: Halbach notes later that Kripke's theory (believe it or not) is considerably simpler than revision semantics.
To axiomatise Tarski's truth definition, we need a binary predicate for his 'satisfaction' [Halbach]
     Full Idea: If the clauses of Tarski's definition of truth are turned into axioms (as Davidson proposed) then a primitive binary predicate symbol for satisfaction is needed, as Tarski defined truth in terms of satisfaction. Standard language has a unary predicate.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 5.2)
Compositional Truth CT has the truth of a sentence depending of the semantic values of its constituents [Halbach]
     Full Idea: In the typed Compositional Truth theory CT, it is compositional because the truth of a sentence depends on the semantic values of the constituents of that sentence.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 8)
     A reaction: [axioms on p. 65 of Halbach]
Gödel numbering means a theory of truth can use Peano Arithmetic as its base theory [Halbach]
     Full Idea: Often syntactic objects are identified with their numerical codes. …Expressions of a countable formal language can be coded in the natural numbers. This allows a theory of truth to use Peano Arithmetic (with its results) as a base theory.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 2)
     A reaction: The numbering system is the famous device invented by Gödel for his great proof of incompleteness. This idea is a key to understanding modern analytic philosophy. It is the bridge which means philosophical theories can be treated mathematically.
Truth axioms need a base theory, because that is where truth issues arise [Halbach]
     Full Idea: Considering the truth axioms in the absence of a base theory is not very sensible because characteristically truth theoretic reasoning arises from the interplay of the truth axioms with the base theory.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 21.2)
     A reaction: The base theory usually seems to be either Peano arithmetic or set theory. We might say that introverted thought (e.g. in infants) has little use for truth; it is when you think about the world that truth becomes a worry.
We know a complete axiomatisation of truth is not feasible [Halbach]
     Full Idea: In the light of incompleteness phenomena, one should not expect a categorical axiomatisation of truth to be feasible, but this should not keep one from studying axiomatic theories of truth (or of arithmetic).
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 3)
     A reaction: This, of course, is because of Gödel's famous results. It is important to be aware in this field that there cannot be a dream of a final theory, so we are just seeing what can be learned about truth.
A theory is 'conservative' if it adds no new theorems to its base theory [Halbach, by PG]
     Full Idea: A truth theory is 'conservative' if the addition of the truth predicate does not add any new theorems to the base theory.
     From: report of Volker Halbach (Axiomatic Theories of Truth [2011], 6 Df 6.6) by PG - Db (ideas)
     A reaction: Halbach presents the definition more formally, and this is my attempt at getting it into plain English. Halbach uses Peano Arithmetic as his base theory, but set theory is also sometimes used.
The Tarski Biconditional theory TB is Peano Arithmetic, plus truth, plus all Tarski bi-conditionals [Halbach]
     Full Idea: The truth theory TB (Tarski Biconditional) is all the axioms of Peano Arithmetic, including all instances of the induction schema with the truth predicate, plus all the sentences of the form T[φ] ↔ φ.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 7)
     A reaction: The biconditional formula is the famous 'snow is white' iff snow is white. The truth of the named sentence is equivalent to asserting the sentence. This is a typed theory of truth, and it is conservative over PA.
Theories of truth are 'typed' (truth can't apply to sentences containing 'true'), or 'type-free' [Halbach]
     Full Idea: I sort theories of truth into the large families of 'typed' and 'type-free'. Roughly, typed theories prohibit a truth predicate's application to sentences with occurrences of that predicate, and one cannot prove the truth of sentences containing 'true'.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], II Intro)
     A reaction: The problem sentence the typed theories are terrified of is the Liar Sentence. Typing produces a hierarchy of languages, referring down to the languages below them.
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
Friedman-Sheard is type-free Compositional Truth, with two inference rules for truth [Halbach]
     Full Idea: The Friedman-Sheard truth system FS is based on compositional theory CT. The axioms of FS are obtained by relaxing the type restriction on the CT-axioms, and adding rules inferring sentences from their truth, and vice versa.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 15)
     A reaction: The rules are called NEC and CONEC by Halbach. The system FSN is FS without the two rules.
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
Kripke-Feferman theory KF axiomatises Kripke fixed-points, with Strong Kleene logic with gluts [Halbach]
     Full Idea: The Kripke-Feferman theory KF is an axiomatisation of the fixed points of an operator, that is, of a Kripkean fixed-point semantics with the Strong Kleene evaluation schema with truth-value gluts.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 15.1)
The KF is much stronger deductively than FS, which relies on classical truth [Halbach]
     Full Idea: The Kripke-Feferman theory is relatively deductively very strong. In particular, it is much stronger than its competitor FS, which is based on a completely classical notion of truth.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 15.3)
The KF theory is useful, but it is not a theory containing its own truth predicate [Halbach]
     Full Idea: KF is useful for explicating Peano arithmetic, but it certainly does not come to close to being a theory that contains its own truth predicate.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 16)
     A reaction: Since it is a type-free theory, its main philosophical aspiration was to contain its own truth predicate, so that is bad news (for philosophers).
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Some say deflationism is axioms which are conservative over the base theory [Halbach]
     Full Idea: Some authors have tried to understand the deflationist claim that truth is not a substantial notion as the claim that a satisfactory axiomatisation of truth should be conservative over the base theory.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 8)
Deflationism says truth is a disquotation device to express generalisations, adding no new knowledge [Halbach]
     Full Idea: There are two doctrines at the core of deflationism. The first says truth is a device of disquotation used to express generalisations, and the second says truth is a thin notion that contributes nothing to our knowledge of the world
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 21)
The main problem for deflationists is they can express generalisations, but not prove them [Halbach]
     Full Idea: The main criticism that deflationist theories based on the disquotation sentences or similar axioms have to meet was raised by Tarski: the disquotation sentences do not allow one to prove generalisations.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 7)
Deflationists say truth is just for expressing infinite conjunctions or generalisations [Halbach]
     Full Idea: Deflationists do not hold that truth is completely dispensable. They claim that truth serves the purpose of expressing infinite conjunctions or generalisations.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 7)
     A reaction: It is also of obvious value as a shorthand in ordinary conversation, but rigorous accounts can paraphrase that out. 'What he said is true'. 'Pick out the true sentences from p,q,r and s' seems to mean 'affirm some of them'. What does 'affirm' mean?
Compositional Truth CT proves generalisations, so is preferred in discussions of deflationism [Halbach]
     Full Idea: Compositional Truth CT and its variants has desirable generalisations among its logical consequences, so they seem to have ousted purely disquotational theories such as TB in the discussion on deflationism.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 8)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
     Full Idea: A 'conditional proof' licenses inferences to a conditional from a deduction of its consequent from its antecedent.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: That is, a proof can be enshrined in an arrow.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
     Full Idea: When a quantifier is attached to a variable, as in '∃(y)....', then it should be read as 'There exists an individual, call it y, such that....'. One should not read it as 'There exists a y such that...', which would attach predicate to quantifier.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: The point is to make clear that in classical logic the predicates attach to the objects, and not to some formal component like a quantifier.
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
In Strong Kleene logic a disjunction just needs one disjunct to be true [Halbach]
     Full Idea: In Strong Kleene logic a disjunction of two sentences is true if at least one disjunct is true, even when the other disjunct lacks a truth value.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 18)
     A reaction: This sounds fine to me. 'Either I'm typing this or Homer had blue eyes' comes out true in any sensible system.
In Weak Kleene logic there are 'gaps', neither true nor false if one component lacks a truth value [Halbach]
     Full Idea: In Weak Kleene Logic, with truth-value gaps, a sentence is neither true nor false if one of its components lacks a truth value. A line of the truth table shows a gap if there is a gap anywhere in the line, and the other lines are classical.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 18)
     A reaction: This will presumably apply even if the connective is 'or', so a disjunction won't be true, even if one disjunct is true, when the other disjunct is unknown. 'Either 2+2=4 or Lot's wife was left-handed' sounds true to me. Odd.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
     Full Idea: It is set theory, and more specifically the theory of relations, that articulates order.
     From: William D. Hart (The Evolution of Logic [2010])
     A reaction: It would seem that we mainly need set theory in order to talk accurately about order, and about infinity. The two come together in the study of the ordinal numbers.
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
     Full Idea: The theory of types is a thing of the past. There is now nothing to choose between ZFC and NBG (Neumann-Bernays-Gödel). NF (Quine's) is a more specialized taste, but is a place to look if you want the universe.
     From: William D. Hart (The Evolution of Logic [2010], 3)
Every attempt at formal rigour uses some set theory [Halbach]
     Full Idea: Almost any subject with any formal rigour employs some set theory.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 4.1)
     A reaction: This is partly because mathematics is often seen as founded in set theory, and formal rigour tends to be mathematical in character.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
     Full Idea: ∈ relates across layers (Plato is a member of his unit set and the set of people), while ⊆ relates within layers (the singleton of Plato is a subset of the set of people). This distinction only became clear in the 19th century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: Getting these two clear may be the most important distinction needed to understand how set theory works.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
     Full Idea: Without the empty set, disjoint sets would have no intersection, and we could not form a∩b without checking that a and b meet. This is an example of the utility of the empty set.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: A novice might plausibly ask why there should be an intersection for every pair of sets, if they have nothing in common except for containing this little puff of nothingness. But then what do novices know?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
     Full Idea: In the second half of the twentieth century there emerged the opinion that foundation is the heart of the way to do set theory.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: It is foundation which is the central axiom of the iterative conception of sets, where each level of sets is built on previous levels, and they are all 'well-founded'.
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
     Full Idea: The usual statement of Foundation is that any nonempty set has a member disjoint from it. This phrasing is ordinal-free and closer to the primitives of ZFC.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
     Full Idea: When a set is finite, we can prove it has a choice function (∀x x∈A → f(x)∈A), but we need an axiom when A is infinite and the members opaque. From infinite shoes we can pick a left one, but from socks we need the axiom of choice.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The socks example in from Russell 1919:126.
With the Axiom of Choice every set can be well-ordered [Hart,WD]
     Full Idea: It follows from the Axiom of Choice that every set can be well-ordered.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: For 'well-ordered' see Idea 13460. Every set can be ordered with a least member.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
     Full Idea: It has been said (by Burt Dreben) that the only reason set theorists do not generally buy the view that V = L is that it would put them out of business by settling their open questions.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: Hart says V=L breaks with the interative conception of sets at level ω+1, which is countable is the constructible view, but has continuum many in the cumulative (iterative) hierarch. The constructible V=L view is anti-platonist.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
     Full Idea: 'Comprehension' is the assumption that every predicate has an extension. Naïve set theory is the theory whose axioms are extensionality and comprehension, and comprehension is thought to be its naivety.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: This doesn't, of course, mean that there couldn't be a more modest version of comprehension. The notorious difficulty come with the discovery of self-referring predicates which can't possibly have extensions.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
     Full Idea: That the iterative sets suffice for most of ZFC does not show they are necessary, nor is it evident that the set of operations has no fixed points (as 0 is a fixed point for square-of), and no infinitely descending chains (like negative integers).
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: People don't seem to worry that they aren't 'necessary', and further measures are possible to block infinitely descending chains.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
     Full Idea: We say that a binary relation R 'partially orders' a field A just in case R is irreflexive (so that nothing bears R to itself) and transitive. When the set is {a,b}, its subsets {a} and {b} are incomparable in a partial ordering.
     From: William D. Hart (The Evolution of Logic [2010], 1)
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
     Full Idea: A partial ordering is a 'total ordering' just in case any two members of its field are comparable, that is, either a is R to b, or b is R to a, or a is b.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: See Idea 13457 for 'partial ordering'. The three conditions are known as the 'trichotomy' condition.
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
     Full Idea: A total order 'well-orders' its field just in case any nonempty subset B of its field has an R-least member, that is, there is a b in B such that for any a in B different from b, b bears R to a. So less-than well-orders natural numbers, but not integers.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The natural numbers have a starting point, but the integers are infinite in both directions. In plain English, an order is 'well-ordered' if there is a starting point.
Von Neumann defines α<β as α∈β [Hart,WD]
     Full Idea: One of the glories of Von Neumann's theory of numbers is to define α < β to mean that α ∈ β.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
     Full Idea: Some have claimed that sets should be rethought in terms of still more basic things, categories.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: [He cites F.William Lawvere 1966] It appears to the the context of foundations for mathematics that he has in mind.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The underestimated costs of giving up classical logic are found in mathematical reasoning [Halbach]
     Full Idea: The costs of giving up classical logic are easily underestimated, …the price being paid in terms of mathematical reasoning.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 16.2)
     A reaction: No one cares much about such costs, until you say they are 'mathematical'. Presumably this is a message to Graham Priest and his pals.
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is some formulae and all of their consequences [Halbach]
     Full Idea: A theory is a set of formulae closed under first-order logical consequence.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 5.1)
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
     Full Idea: All the main set theories deny that there is a set of which everything is a member. No interpretation has a domain with everything in it. So the universal quantifier never gets to mean everything all at once; 'all' does not mean all.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: Could you have an 'uncompleted' universal set, in the spirit of uncompleted infinities? In ordinary English we can talk about 'absolutely everything' - we just can't define a set of everything. Must we 'define' our domain?
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
     Full Idea: The beginning of modern model theory was when Morley proved Los's Conjecture in 1962 - that a complete theory in a countable language categorical in one uncountable cardinal is categorical in all.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Model theory studies how set theory can model sets of sentences [Hart,WD]
     Full Idea: Modern model theory investigates which set theoretic structures are models for which collections of sentences.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: So first you must choose your set theory (see Idea 13497). Then you presumably look at how to formalise sentences, and then look at the really tricky ones, many of which will involve various degrees of infinity.
Model theory is mostly confined to first-order theories [Hart,WD]
     Full Idea: There is no developed methematics of models for second-order theories, so for the most part, model theory is about models for first-order theories.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Models are ways the world might be from a first-order point of view [Hart,WD]
     Full Idea: Models are ways the world might be from a first-order point of view.
     From: William D. Hart (The Evolution of Logic [2010], 9)
5. Theory of Logic / K. Features of Logics / 3. Soundness
You cannot just say all of Peano arithmetic is true, as 'true' isn't part of the system [Halbach]
     Full Idea: One cannot just accept that all the theorems of Peano arithmetic are true when one accepts Peano arithmetic as the notion of truth is not available in the language of arithmetic.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 22.1)
     A reaction: This is given as the reason why Kreisel and Levy (1968) introduced 'reflection principles', which allow you to assert whatever has been proved (with no mention of truth). (I think. The waters are closing over my head).
Normally we only endorse a theory if we believe it to be sound [Halbach]
     Full Idea: If one endorses a theory, so one might argue, one should also take it to be sound.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 22.1)
Soundness must involve truth; the soundness of PA certainly needs it [Halbach]
     Full Idea: Soundness seems to be a notion essentially involving truth. At least I do not know how to fully express the soundness of Peano arithmetic without invoking a truth predicate.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 22.1)
     A reaction: I suppose you could use some alternative locution such as 'assertible' or 'cuddly'. Intuitionists seem a bit vague about the truth end of things.
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
     Full Idea: First-order logic is 'compact', which means that any logical consequence of a set (finite or infinite) of first-order sentences is a logical consequence of a finite subset of those sentences.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 1. Paradox
Many new paradoxes may await us when we study interactions between frameworks [Halbach]
     Full Idea: Paradoxes that arise from interaction of predicates such as truth, necessity, knowledge, future and past truths have receive little attention. There may be many unknown paradoxes lurking when we develop frameworks with these intensional notions.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 24.2)
     A reaction: Nice. This is a wonderful pointer to new research in the analytic tradition, in which formal problems will gradually iron out our metaphysical framework.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
     Full Idea: Berry's Paradox: by the least number principle 'the least number denoted by no description of fewer than 79 letters' exists, but we just referred to it using a description of 77 letters.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: I struggle with this. If I refer to 'an object to which no human being could possibly refer', have I just referred to something? Graham Priest likes this sort of idea.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
     Full Idea: The Burali-Forti Paradox was a crisis for Cantor's theory of ordinal numbers.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
     Full Idea: In effect, the machinery introduced to solve the liar can always be rejigged to yield another version the liar.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: [He cites Hans Herzberger 1980-81] The machinery is Tarski's device of only talking about sentences of a language by using a 'metalanguage'.
The liar paradox applies truth to a negated truth (but the conditional will serve equally) [Halbach]
     Full Idea: An essential feature of the liar paradox is the application of the truth predicate to a sentence with a negated occurrence of the truth predicate, though the negation can be avoided by using the conditional.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 19.3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
     Full Idea: We can show (using the axiom of choice) that the less-than relation, <, well-orders the ordinals, ...and that it partially orders the ordinals, ...and that it totally orders the ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
     Full Idea: The axiom of infinity with separation yields a least limit ordinal, which is called ω.
     From: William D. Hart (The Evolution of Logic [2010], 3)
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
     Full Idea: Since we can map the transfinite ordinals one-one into the infinite cardinals, there are at least as many infinite cardinals as transfinite ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
     Full Idea: It is easier to generalize von Neumann's finite ordinals into the transfinite. All Zermelo's nonzero finite ordinals are singletons, but if ω were a singleton it is hard to see how if could fail to be the successor of its member and so not a limit.
     From: William D. Hart (The Evolution of Logic [2010], 3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
     Full Idea: The real numbers were not isolated from geometry until the arithmetization of analysis during the nineteenth century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
     Full Idea: Mathematical induction is a way to establish truths about the infinity of natural numbers by a finite proof.
     From: William D. Hart (The Evolution of Logic [2010], 5)
     A reaction: If there are truths about infinities, it is very tempting to infer that the infinities must therefore 'exist'. A nice, and large, question in philosophy is whether there can be truths without corresponding implications of existence.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
     Full Idea: There is a familiar comparison between Euclid (unique parallel) and 'spherical' geometry (no parallel) and 'saddle' geometry (several parallels).
     From: William D. Hart (The Evolution of Logic [2010], 2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The compactness theorem can prove nonstandard models of PA [Halbach]
     Full Idea: Nonstandard models of Peano arithmetic are models of PA that are not isomorphic to the standard model. Their existence can be established with the compactness theorem or the adequacy theorem of first-order logic.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 8.3)
The global reflection principle seems to express the soundness of Peano Arithmetic [Halbach]
     Full Idea: The global reflection principle ∀x(Sent(x) ∧ Bew[PA](x) → Tx) …seems to be the full statement of the soundness claim for Peano arithmetic, as it expresses that all theorems of Peano arithmetic are true.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 22.1)
     A reaction: That is, an extra principle must be introduced to express the soundness. PA is, of course, not complete.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
To reduce PA to ZF, we represent the non-negative integers with von Neumann ordinals [Halbach]
     Full Idea: For the reduction of Peano Arithmetic to ZF set theory, usually the set of finite von Neumann ordinals is used to represent the non-negative integers.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 6)
     A reaction: Halbach makes it clear that this is just one mode of reduction, relative interpretability.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Set theory was liberated early from types, and recent truth-theories are exploring type-free [Halbach]
     Full Idea: While set theory was liberated much earlier from type restrictions, interest in type-free theories of truth only developed more recently.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 4)
     A reaction: Tarski's theory of truth involves types (or hierarchies).
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
     Full Idea: The thesis that no existence proposition is analytic is one of the few constants in philosophical consciences, but there are many existence claims in mathematics, such as the infinity of primes, five regular solids, and certain undecidable propositions.
     From: William D. Hart (The Evolution of Logic [2010], 2)
7. Existence / C. Structure of Existence / 2. Reduction
That Peano arithmetic is interpretable in ZF set theory is taken by philosophers as a reduction [Halbach]
     Full Idea: The observation that Peano arithmetic is relatively interpretable in ZF set theory is taken by many philosophers to be a reduction of numbers to sets.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 23)
     A reaction: Nice! Being able to express something in a different language is not the same as a reduction. Back to the drawing board. What do you really mean by a reduction? If we model something, we don't 'reduce' it to the model.
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
     Full Idea: Jespersen calls a noun a mass word when it has no plural, does not take numerical adjectives, and does not take 'fewer'.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: Jespersen was a great linguistics expert.
10. Modality / A. Necessity / 2. Nature of Necessity
Maybe necessity is a predicate, not the usual operator, to make it more like truth [Halbach]
     Full Idea: Should necessity be treated as a predicate rather than (as in modal logic) as a sentential operator? It is odd to assign different status to necessity and truth, hampering their interaction. That all necessities are true can't be expressed by an operator.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 24.2)
     A reaction: [compressed] Halbach and Horsten consistently treat truth as a predicate, but maybe truth is an operator. Making necessity a predicate and not an operator would be a huge upheaval in the world of modal logic. Nice move!
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
     Full Idea: The conception of Frege is that self-evidence is an intrinsic property of the basic truths, rules, and thoughts expressed by definitions.
     From: William D. Hart (The Evolution of Logic [2010], p.350)
     A reaction: The problem is always that what appears to be self-evident may turn out to be wrong. Presumably the effort of arriving at a definition ought to clarify and support the self-evident ingredient.
12. Knowledge Sources / A. A Priori Knowledge / 3. Innate Knowledge / c. Tabula rasa
If the soul were a tabula rasa, with no innate ideas, there could be no moral goodness or justice [Cudworth]
     Full Idea: The soul is not a mere rasa tabula, a naked and passive thing, with no innate furniture of its own, nor any thing in it, but what was impressed upon it without; for then there could not possibly be any such thing as moral good and evil, just and unjust.
     From: Ralph Cudworth (On Eternal and Immutable Morality [1688], Bk IV Ch 6.4)
     A reaction: He goes on to quote Hobbes saying there is no good in objects themselves. I don't see why we must have an innate moral capacity, provided that we have a capacity to make judgements.
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
     Full Idea: In the case of the parallels postulate, Euclid's fifth axiom (the whole is greater than the part), and comprehension, saying was believing for a while, but what was said was false. This should make a shrewd philosopher sceptical about a priori knowledge.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Euclid's fifth is challenged by infinite numbers, and comprehension is challenged by Russell's paradox. I can't see a defender of the a priori being greatly worried about these cases. No one ever said we would be right - in doing arithmetic, for example.
12. Knowledge Sources / D. Empiricism / 5. Empiricism Critique
Senses cannot judge one another, so what judges senses cannot be a sense, but must be superior [Cudworth]
     Full Idea: The sight cannot judge of sounds, nor the hearing of light and colours; wherefore that which judges of all the senses and their several objects, cannot be itself any sense, but something of a superior nature.
     From: Ralph Cudworth (On Eternal and Immutable Morality [1688], Ch.II.VI.1)
     A reaction: How nice to find a seventeenth century English writer rebelling against empiricism!
17. Mind and Body / E. Mind as Physical / 7. Anti-Physicalism / a. Physicalism critique
Sense is fixed in the material form, and so can't grasp abstract universals [Cudworth]
     Full Idea: Sense which lies flat and grovelling in the individuals, and is stupidly fixed in the material form, is not able to rise up or ascend to an abstract universal notion.
     From: Ralph Cudworth (On Eternal and Immutable Morality [1688], Ch.III.III.2)
     A reaction: This still strikes me as being one of the biggest problems with reductive physicalism, that a lump of meat in your head can grasp abstractions (whatever they are) and universal concepts. Personally I am a physicalist, but it is weird.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]
     Full Idea: A Fregean concept is a function that assigns to each object a truth value. So instead of the colour green, the concept GREEN assigns truth to each green thing, but falsity to anything else.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This would seem to immediately hit the renate/cordate problem, if there was a world in which all and only the green things happened to be square. How could Frege then distinguish the green from the square? Compare Idea 8245.
19. Language / D. Propositions / 4. Mental Propositions
We need propositions to ascribe the same beliefs to people with different languages [Halbach]
     Full Idea: Being able to ascribe the same proposition as a belief to persons who do not have a common language seems to be one of the main reasons to employ propositions.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 2)
     A reaction: Propositions concern beliefs, as well as sentence meanings. I would want to say that a dog and I could believe the same thing, and that is a non-linguistic reason to believe in propositions. Maybe 'translation' cuts out the proposition middleman?
22. Metaethics / B. Value / 1. Nature of Value / c. Objective value
Keeping promises and contracts is an obligation of natural justice [Cudworth]
     Full Idea: To keep faith and perform covenants is that which natural justice obligeth to absolutely.
     From: Ralph Cudworth (On Eternal and Immutable Morality [1688], Ch.II.4)
     A reaction: A nice example of an absolute moral intuition, but one which can clearly be challenged. Covenants (contracts) wouldn't work unless everyone showed intense commitment to keeping them, even beyond the grave, and we all benefit from good contracts.
25. Social Practice / D. Justice / 2. The Law / c. Natural law
Obligation to obey all positive laws is older than all laws [Cudworth]
     Full Idea: Obligation to obey all positive laws is older than all laws.
     From: Ralph Cudworth (On Eternal and Immutable Morality [1688], Ch.II.3)
     A reaction: Clearly villains can pass wicked laws, so there can't be an obligation to obey all laws (even if they are 'positive', which seems to beg the question). Nevertheless this is a good reason why laws cannot be the grounding of morality.
28. God / A. Divine Nature / 4. Divine Contradictions
An omnipotent will cannot make two things equal or alike if they aren't [Cudworth]
     Full Idea: Omnipotent will cannot make things like or equal one to another, without the natures of likeness and equality.
     From: Ralph Cudworth (On Eternal and Immutable Morality [1688], Ch.II.I)
     A reaction: This is one of the many classic 'paradoxes of omnipotence'. The best strategy is to define omnipotence as 'being able to do everything which it is possible to do'. Anything beyond that is inviting paradoxical disaster.
28. God / A. Divine Nature / 6. Divine Morality / d. God decrees morality
If the will and pleasure of God controls justice, then anything wicked or unjust would become good if God commanded it [Cudworth]
     Full Idea: If the arbitrary will and pleasure of God is the first and only rule of good and justice, it follows that nothing can be so grossly wicked or unjust but if it were commanded by this omnipotent Deity, it must forthwith become holy, just and righteous.
     From: Ralph Cudworth (On Eternal and Immutable Morality [1688], Ch.I.I.5)
     A reaction: This is the strong (Platonic) answer to the Euthyphro Question (Idea 336). One answer is that God would not command in such a way - but why not? We may say that God and goodness merge into one, but we are interested in ultimate authority.
The requirement that God must be obeyed must precede any authority of God's commands [Cudworth]
     Full Idea: If it were not morally good and just in its own nature before any positive command of God, that God should be obeyed by his creatures, the bare will of God himself could not beget any obligation upon anyone.
     From: Ralph Cudworth (On Eternal and Immutable Morality [1688], Ch.II.3)
     A reaction: This strikes me as a self-evident truth, and a big problem for anyone who wants to make God the source of morality. You don't have to accept anyone's authority just because they are powerful or clever (though they do bestow a certain natural authority!).