Combining Texts

All the ideas for 'Universal Prescriptivism', 'The Structure of Empirical Knowledge' and 'Understanding the Infinite'

unexpand these ideas     |    start again     |     specify just one area for these texts


51 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
     Full Idea: Second-order set theory is just like first-order set-theory, except that we use the version of Replacement with a universal second-order quantifier over functions from set to sets.
     From: Shaughan Lavine (Understanding the Infinite [1994], VII.4)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
     Full Idea: A member m of M is an 'upper bound' of a subset N of M if m is not less than any member of N. A member m of M is a 'least upper bound' of N if m is an upper bound of N such that if l is any other upper bound of N, then m is less than l.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: [if you don't follow that, you'll have to keep rereading it till you do]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
     Full Idea: Since combinatorial collections are enumerated, some multiplicities may be too large to be gathered into combinatorial collections. But the size of a multiplicity seems quite irrelevant to whether it forms a logical connection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
     Full Idea: Many of those who are skeptical about the existence of infinite combinatorial collections would want to doubt or deny the Axiom of Choice.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
     Full Idea: The Power Set is just he codification of the fact that the collection of functions from a mathematical collection to a mathematical collection is itself a mathematical collection that can serve as a domain of mathematical study.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
     Full Idea: The Axiom of Replacement (of Skolem and Fraenkel) was remarkable for its universal acceptance, though it seemed to have no consequences except for the properties of the higher reaches of the Cantorian infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
     Full Idea: The Axiom of Foundation (Zermelo 1930) says 'Every (descending) chain in which each element is a member of the previous one is of finite length'. ..This forbids circles of membership, or ungrounded sets. ..The iterative conception gives this centre stage.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
     Full Idea: Combinatorial collections (defined just by the members) obviously obey the Axiom of Choice, while it is at best dubious whether logical connections (defined by a rule) do.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
     Full Idea: The controversy was not about Choice per se, but about the correct notion of function - between advocates of taking mathematics to be about arbitrary functions and advocates of taking it to be about functions given by rules.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
     Full Idea: The Peano-Russell notion of class is the 'logical' notion, where each collection is associated with some kind of definition or rule that characterises the members of the collection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
     Full Idea: The iterative conception of set was not so much as suggested, let alone advocated by anyone, until 1947.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
     Full Idea: The iterative conception of sets does not tell us how far to iterate, and so we must start with an Axiom of Infinity. It also presupposes the notion of 'transfinite iteration'.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
     Full Idea: The iterative conception does not provide a conception that unifies the axioms of set theory, ...and it has had very little impact on what theorems can be proved.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
     A reaction: He says he would like to reject the iterative conception, but it may turn out that Foundation enables new proofs in mathematics (though it hasn't so far).
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
     Full Idea: Limitation of Size has it that if a collection is the same size as a set, then it is a set. The Axiom of Replacement is characteristic of limitation of size.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
     Full Idea: A collection M is 'well-ordered' by a relation < if < linearly orders M with a least element, and every subset of M that has an upper bound not in it has an immediate successor.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
     Full Idea: The distinctive feature of second-order logic is that it presupposes that, given a domain, there is a fact of the matter about what the relations on it are, so that the range of the second-order quantifiers is fixed as soon as the domain is fixed.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
     A reaction: This sounds like a rather large assumption, which is open to challenge. I am not sure whether it was the basis of Quine's challenge to second-order logic. He seems to have disliked its vagueness, because it didn't stick with 'objects'.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
     Full Idea: The Law of Excluded Middle is (part of) the foundation of the mathematical practice of employing proofs by contradiction.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: This applies in a lot of logic, as well as in mathematics. Come to think of it, it applies in Sudoku.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
     Full Idea: Mathematics is today thought of as the study of abstract structure, not the study of quantity. That point of view arose directly out of the development of the set-theoretic notion of abstract structure.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.2)
     A reaction: It sounds as if Structuralism, which is a controversial view in philosophy, is a fait accompli among mathematicians.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
     Full Idea: One reason to introduce the rational numbers is that it simplifes the theory of division, since every rational number is divisible by every nonzero rational number, while the analogous statement is false for the natural numbers.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.3)
     A reaction: That is, with rations every division operation has an answer.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
     Full Idea: The chief importance of the Continuum Hypothesis for Cantor (I believe) was that it would show that the real numbers form a set, and hence that they were encompassed by his theory.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
     Full Idea: The Cauchy convergence criterion for a sequence: the sequence S0,S1,... has a limit if |S(n+r) - S(n)| is less than any given quantity for every value of r and sufficiently large values of n. He proved this necessary, but not sufficient.
     From: Shaughan Lavine (Understanding the Infinite [1994], 2.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
     Full Idea: Roughly speaking, the upper and lower parts of the Dedekind cut correspond to the commensurable ratios greater than and less than a given incommensurable ratio.
     From: Shaughan Lavine (Understanding the Infinite [1994], II.6)
     A reaction: Thus there is the problem of whether the contents of the gap are one unique thing, or many.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
     Full Idea: Counting a set produces a well-ordering of it. Conversely, if one has a well-ordering of a set, one can count it by following the well-ordering.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Cantor didn't mean that you could literally count the set, only in principle.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
     Full Idea: The indiscernibility of indefinitely large sizes will be a critical part of the theory of indefinitely large sizes.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
     Full Idea: My proposal is that the concept of the infinite began with an extrapolation from the experience of indefinitely large size.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
     A reaction: I think it might be better to talk of an 'abstraction' than an 'extrapolition', since the latter is just more of the same, which doesn't get you to concept. Lavine spends 100 pages working out his proposal.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
     Full Idea: The intuitionist endorse the actual finite, but only the potential infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
     Full Idea: The symbol 'aleph-nought' denotes the cardinal number of the set of natural numbers. The symbol 'aleph-one' denotes the next larger cardinal number. 'Aleph-omega' denotes the omega-th cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
     Full Idea: The ordinals are basic because the transfinite sets are those that can be counted, or (equivalently for Cantor), those that can be numbered by an ordinal or are well-ordered.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Lavine observes (p.55) that for Cantor 'countable' meant 'countable by God'!
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
     Full Idea: The paradox of the largest ordinal (the 'Burali-Forti') is that the class of all ordinal numbers is apparently well-ordered, and so it has an ordinal number as order type, which must be the largest ordinal - but all ordinals can be increased by one.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
     Full Idea: The paradox of the largest cardinal ('Cantor's Paradox') says the diagonal argument shows there is no largest cardinal, but the class of all individuals (including the classes) must be the largest cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
     Full Idea: Every theorem of mathematics has a counterpart with set theory - ...but that theory cannot serve as a basis for the notion of proof.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
     Full Idea: In modern mathematics virtually all work is only up to isomorphism and no one cares what the numbers or points and lines 'really are'.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: At least that leaves the field open for philosophers, because we do care what things really are. So should everybody else, but there is no persuading some people.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
     Full Idea: Intuitionism in philosophy of mathematics rejects set-theoretic foundations.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3 n33)
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
A coherence theory of justification can combine with a correspondence theory of truth [Bonjour]
     Full Idea: There is no manifest absurdity in combining a coherence theory of justification with a correspondence theory of truth.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.1)
     A reaction: His point is to sharply (and correctly) distinguish coherent justification from a coherence theory of truth. Personally I would recommend talking of a 'robust' theory of truth, without tricky commitment to 'correspondence' between very dissimilar things.
There will always be a vast number of equally coherent but rival systems [Bonjour]
     Full Idea: On any plausible conception of coherence, there will always be many, probably infinitely many, different and incompatible systems of belief which are equally coherent.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: If 'infinitely many' theories are allowed, that blocks the coherentist hope that widening and precisifying the system will narrow down the options and offer some verisimilitude. If we stick to current English expression, that should keep them finite.
Empirical coherence must attribute reliability to spontaneous experience [Bonjour]
     Full Idea: An empirical coherence theory needs, for the beliefs of a cognitive system to be even candidates for empirical justification, that the system must contain laws attributing a high degree of reliability to a variety of spontaneous cognitive beliefs.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 7.1)
     A reaction: Wanting such a 'law' seems optimistic, and not in the spirit of true coherentism, which can individually evaluate each experiential belief. I'm not sure Bonjour's Observation Requirement is needed, since it is incoherent to neglect observations.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / b. Pro-coherentism
A well written novel cannot possibly match a real belief system for coherence [Bonjour]
     Full Idea: It is not even minimally plausible that a well written novel ...would have the degree of coherence required to be a serious alternative to anyone's actual system of beliefs.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: This seems correct. 'Bleak House' is wonderfully consistent, but its elements are entirely verbal, and nothing occupies the space between the facts that are described. And Lady Dedlock is not in Debrett. I think this kills a standard objection.
The objection that a negated system is equally coherent assume that coherence is consistency [Bonjour]
     Full Idea: Sometimes it is said that if one has an appropriately coherent system, an alternative system can be produced simply be negating all of the components of the first system. This would only be so if coherence amounted simply to consistency.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: I associate Russell with this original objection to coherentism. I formerly took this to be a serious problem, and am now relieved to see that it clearly isn't.
A coherent system can be justified with initial beliefs lacking all credibility [Bonjour]
     Full Idea: It is simply not necessary in order for [the coherence] view to yield justification to suppose that cognitively spontaneous beliefs have some degree of initial or independent credibility.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 7.2)
     A reaction: This is thoroughly and rather persuasively criticised by Erik Olson. But he always focuses on the coherence of a 'system' with multiple beliefs. I take the credibility of each individual belief to need coherent assessment against a full background.
The best explanation of coherent observations is they are caused by and correspond to reality [Bonjour]
     Full Idea: The best explanation for a stable system of beliefs which rely on observation is that the beliefs are caused by what they depict, and the system roughly corresponds to the independent reality it describes.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 8.3)
     A reaction: [compressed] Anyone who links best explanation to coherence (and to induction) warms the cockles of my heart. Erik Olson offers a critique, but doesn't convince me. The alternative is to find a better explanation (than reality), or give up.
14. Science / A. Basis of Science / 5. Anomalies
Anomalies challenge the claim that the basic explanations are actually basic [Bonjour]
     Full Idea: The distinctive significance of anomalies lies in the fact that they undermine the claim of the allegedly basic explanatory principles to be genuinely basic.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.3)
     A reaction: This seems plausible, suggesting that (rather than an anomaly flatly 'falsifying' a theory) an anomaly may just demand a restructuring or reconceptualising of the theory.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / c. Ethical intuitionism
How can intuitionists distinguish universal convictions from local cultural ones? [Hare]
     Full Idea: There are convictions which are common to most societies; but there are others which are not, and no way is given by intuitionists of telling which are the authoritative data.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.454)
     A reaction: It seems unfair on intuitionists to say they haven't given a way to evaluate such things, given that they have offered intuition. The issue is what exactly they mean by 'intuition'.
You can't use intuitions to decide which intuitions you should cultivate [Hare]
     Full Idea: If it comes to deciding what intuitions and dispositions to cultivate, we cannot rely on the intuitions themselves, as intuitionists do.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.461)
     A reaction: Makes intuitionists sound a bit dim. Surely Hume identifies dispositions (such as benevolence) which should be cultivated, because they self-evidently improve social life?
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / h. Expressivism
Emotivists mistakenly think all disagreements are about facts, and so there are no moral reasons [Hare]
     Full Idea: Emotivists concluded too hastily that because naturalism and intuitionism are false, you cannot reason about moral questions, because they assumed that the only questions you can reason about are factual ones.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.455)
     A reaction: Personally I have a naturalistic view of ethics (based on successful functioning, as indicated by Aristotle), so not my prob. Why can't we reason about expressive emotions? We reason about art.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / i. Prescriptivism
Prescriptivism sees 'ought' statements as imperatives which are universalisable [Hare]
     Full Idea: Universal prescriptivists hold that 'ought'-judgements are prescriptive like plain imperatives, but differ from them in being universalisable.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.457)
     A reaction: Sounds a bit tautological. Which comes first, the normativity or the universalisability?
If morality is just a natural or intuitive description, that leads to relativism [Hare]
     Full Idea: Non-descriptivists (e.g. prescriptivists) reject descriptivism in its naturalist or intuitionist form, because they are both destined to collapse into relativism.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.453)
     A reaction: I'm not clear from this why prescriptism would not also turn out to be relativist, if it includes evaluations along with facts.
Descriptivism say ethical meaning is just truth-conditions; prescriptivism adds an evaluation [Hare]
     Full Idea: Ethical descriptivism is the view that ethical sentence-meaning is wholly determined by truth-conditions. …Prescriptivists think there is a further element of meaning, which expresses prescriptions or evaluations or attitudes which we assent to.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.452)
     A reaction: Not sure I understand either of these. If all meaning consists of truth-conditions, that will apply to ethics. If meaning includes evaluations, that will apply to non-ethics.
If there can be contradictory prescriptions, then reasoning must be involved [Hare]
     Full Idea: Prescriptivists claim that there are rules of reasoning which govern non-descriptive as well as descriptive speech acts. The standard example is possible logical inconsistency between contradictory prescriptions.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.455)
     A reaction: The example doesn't seem very good. Inconsistency can appear in any area of thought, but that isn't enough to infer full 'rules of reasoning'. I could desire two incompatible crazy things.
An 'ought' statement implies universal application [Hare]
     Full Idea: In any 'ought' statement there is implicit a principle which says that the statement applies to all precisely similar situations.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.456)
     A reaction: No two situations can ever be 'precisely' similar. Indeed, 'precisely similar' may be an oxymoron (at least for situations). Kantians presumably like this idea.
Prescriptivism implies a commitment, but descriptivism doesn't [Hare]
     Full Idea: Prescriptivists hold that moral judgements commit the speaker to motivations and actions, but non-moral facts by themselves do not do this.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.459)
     A reaction: Surely hunger motivates to action? I suppose the key word is 'commit'. But lazy people are allowed to make moral judgements.
23. Ethics / D. Deontological Ethics / 3. Universalisability
Moral judgements must invoke some sort of principle [Hare]
     Full Idea: To make moral judgements is implicitly to invoke some principle, however specific.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.458)