Combining Texts

All the ideas for 'Universal Prescriptivism', 'Philosophy of Logics' and 'Introduction to the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


33 ideas

3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Logical truth seems much less likely to 'correspond to the facts' than factual truth does [Haack]
     Full Idea: It is surely less plausible to suppose that logical truth consists in correspondence to the facts than that 'factual' truth does.
     From: Susan Haack (Philosophy of Logics [1978], 7.6)
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
The same sentence could be true in one language and meaningless in another, so truth is language-relative [Haack]
     Full Idea: The definition of truth will have to be, Tarski argues, relative to a language, for one and the same sentence may be true in one language, and false or meaningless in another.
     From: Susan Haack (Philosophy of Logics [1978], 7.5)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / c. Ethical intuitionism
How can intuitionists distinguish universal convictions from local cultural ones? [Hare]
     Full Idea: There are convictions which are common to most societies; but there are others which are not, and no way is given by intuitionists of telling which are the authoritative data.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.454)
     A reaction: It seems unfair on intuitionists to say they haven't given a way to evaluate such things, given that they have offered intuition. The issue is what exactly they mean by 'intuition'.
You can't use intuitions to decide which intuitions you should cultivate [Hare]
     Full Idea: If it comes to deciding what intuitions and dispositions to cultivate, we cannot rely on the intuitions themselves, as intuitionists do.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.461)
     A reaction: Makes intuitionists sound a bit dim. Surely Hume identifies dispositions (such as benevolence) which should be cultivated, because they self-evidently improve social life?
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / h. Expressivism
Emotivists mistakenly think all disagreements are about facts, and so there are no moral reasons [Hare]
     Full Idea: Emotivists concluded too hastily that because naturalism and intuitionism are false, you cannot reason about moral questions, because they assumed that the only questions you can reason about are factual ones.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.455)
     A reaction: Personally I have a naturalistic view of ethics (based on successful functioning, as indicated by Aristotle), so not my prob. Why can't we reason about expressive emotions? We reason about art.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / i. Prescriptivism
Prescriptivism sees 'ought' statements as imperatives which are universalisable [Hare]
     Full Idea: Universal prescriptivists hold that 'ought'-judgements are prescriptive like plain imperatives, but differ from them in being universalisable.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.457)
     A reaction: Sounds a bit tautological. Which comes first, the normativity or the universalisability?
If morality is just a natural or intuitive description, that leads to relativism [Hare]
     Full Idea: Non-descriptivists (e.g. prescriptivists) reject descriptivism in its naturalist or intuitionist form, because they are both destined to collapse into relativism.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.453)
     A reaction: I'm not clear from this why prescriptism would not also turn out to be relativist, if it includes evaluations along with facts.
Descriptivism say ethical meaning is just truth-conditions; prescriptivism adds an evaluation [Hare]
     Full Idea: Ethical descriptivism is the view that ethical sentence-meaning is wholly determined by truth-conditions. …Prescriptivists think there is a further element of meaning, which expresses prescriptions or evaluations or attitudes which we assent to.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.452)
     A reaction: Not sure I understand either of these. If all meaning consists of truth-conditions, that will apply to ethics. If meaning includes evaluations, that will apply to non-ethics.
If there can be contradictory prescriptions, then reasoning must be involved [Hare]
     Full Idea: Prescriptivists claim that there are rules of reasoning which govern non-descriptive as well as descriptive speech acts. The standard example is possible logical inconsistency between contradictory prescriptions.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.455)
     A reaction: The example doesn't seem very good. Inconsistency can appear in any area of thought, but that isn't enough to infer full 'rules of reasoning'. I could desire two incompatible crazy things.
An 'ought' statement implies universal application [Hare]
     Full Idea: In any 'ought' statement there is implicit a principle which says that the statement applies to all precisely similar situations.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.456)
     A reaction: No two situations can ever be 'precisely' similar. Indeed, 'precisely similar' may be an oxymoron (at least for situations). Kantians presumably like this idea.
Prescriptivism implies a commitment, but descriptivism doesn't [Hare]
     Full Idea: Prescriptivists hold that moral judgements commit the speaker to motivations and actions, but non-moral facts by themselves do not do this.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.459)
     A reaction: Surely hunger motivates to action? I suppose the key word is 'commit'. But lazy people are allowed to make moral judgements.
23. Ethics / D. Deontological Ethics / 3. Universalisability
Moral judgements must invoke some sort of principle [Hare]
     Full Idea: To make moral judgements is implicitly to invoke some principle, however specific.
     From: Richard M. Hare (Universal Prescriptivism [1991], p.458)