Combining Texts

All the ideas for 'Material Constitution', 'Gentzen's Analysis of First-Order Proofs' and 'Foundations of Geometry'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is based on transitions between sentences [Prawitz]
     Full Idea: I agree entirely with Dummett that the right way to answer the question 'what is logic?' is to consider transitions between sentences.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], §04)
     A reaction: I always protest at this point that reliance on sentences is speciesism against animals, who are thereby debarred from reasoning. See the wonderful Idea 1875 of Chrysippus. Hacking's basic suggestion seems right. Transition between thoughts.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Natural deduction introduction rules may represent 'definitions' of logical connectives [Prawitz]
     Full Idea: With Gentzen's natural deduction, we may say that the introductions represent, as it were, the 'definitions' of the logical constants. The introductions are not literally understood as 'definitions'.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], 2.2.2)
     A reaction: [Hacking, in 'What is Logic? §9' says Gentzen had the idea that his rules actually define the constants; not sure if Prawitz and Hacking are disagreeing]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
In natural deduction, inferences are atomic steps involving just one logical constant [Prawitz]
     Full Idea: In Gentzen's natural deduction, the inferences are broken down into atomic steps in such a way that each step involves only one logical constant. The steps are the introduction or elimination of the logical constants.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], 1.1)
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Hilbert aimed to eliminate number from geometry [Hilbert, by Hart,WD]
     Full Idea: One of Hilbert's aims in 'The Foundations of Geometry' was to eliminate number [as measure of lengths and angles] from geometry.
     From: report of David Hilbert (Foundations of Geometry [1899]) by William D. Hart - The Evolution of Logic 2
     A reaction: Presumably this would particularly have to include the elimination of ratios (rather than actual specific lengths).
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid axioms concerns possibilities of construction, but Hilbert's assert the existence of objects [Hilbert, by Chihara]
     Full Idea: Hilbert's geometrical axioms were existential in character, asserting the existence of certain geometrical objects (points and lines). Euclid's postulates do not assert the existence of anything; they assert the possibility of certain constructions.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Charles Chihara - A Structural Account of Mathematics 01.1
     A reaction: Chihara says geometry was originally understood modally, but came to be understood existentially. It seems extraordinary to me that philosophers of mathematics can have become more platonist over the centuries.
Hilbert's formalisation revealed implicit congruence axioms in Euclid [Hilbert, by Horsten/Pettigrew]
     Full Idea: In his formal investigation of Euclidean geometry, Hilbert uncovered congruence axioms that implicitly played a role in Euclid's proofs but were not explicitly recognised.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Horsten,L/Pettigrew,R - Mathematical Methods in Philosophy 2
     A reaction: The writers are offering this as a good example of the benefits of a precise and formal approach to foundational questions. It's hard to disagree, but dispiriting if you need a PhD in maths before you can start doing philosophy.
Hilbert's geometry is interesting because it captures Euclid without using real numbers [Hilbert, by Field,H]
     Full Idea: Hilbert's formulation of the Euclidean theory is of special interest because (besides being rigorously axiomatised) it does not employ the real numbers in the axioms.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Hartry Field - Science without Numbers 3
     A reaction: Notice that this job was done by Hilbert, and not by the fictionalist Hartry Field.
9. Objects / C. Structure of Objects / 6. Constitution of an Object
Constitution is identity (being in the same place), or it isn't (having different possibilities) [Wasserman]
     Full Idea: Some insist that constitution is identity, on the grounds that distinct material objects cannot occupy the same place at the same time. Others argue that constitution is not identity, since the statue and its material differ in important respects.
     From: Ryan Wasserman (Material Constitution [2009], Intro)
     A reaction: The 'important respects' seem to concern possibilities rather than actualities, which is suspicious. It is misleading to think we are dealing with two things and their relation here. Objects must have constitutions; constitutions make objects.
Constitution is not identity, because it is an asymmetric dependence relation [Wasserman]
     Full Idea: For those for whom 'constitution is not identity' (the 'constitution view'), constitution is said to be an asymmetric relation, and also a dependence relation (unlike identity).
     From: Ryan Wasserman (Material Constitution [2009], 2)
     A reaction: It seems obvious that constitution is not identity, because there is more to a thing's identity than its mere constitution. But this idea makes it sound as if constitution has nothing to do with identity (chalk and cheese), and that can't be right.
There are three main objections to seeing constitution as different from identity [Wasserman]
     Full Idea: The three most common objections to the constitution view are the Impenetrability Objection (two things in one place?), the Extensionality Objection (mereology says wholes are just their parts), and the Grounding Objection (their ground is the same).
     From: Ryan Wasserman (Material Constitution [2009], 2)
     A reaction: [summary] He adds a fourth, that if two things can be in one place, why stop at two? [Among defenders of the Constitution View he lists Baker, Fine, Forbes, Koslicki, Kripke, Lowe, Oderberg, N.Salmon, Shoemaker, Simons and Yablo.]
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
The weight of a wall is not the weight of its parts, since that would involve double-counting [Wasserman]
     Full Idea: We do not calculate the weight of something by summing the weights of all its parts - weigh bricks and the molecules of a wall and you will get the wrong result, since you have weighed some parts more than once.
     From: Ryan Wasserman (Material Constitution [2009], 2)
     A reaction: In fact the complete inventory of the parts of a thing is irrelevant to almost anything we would like to know about the thing. The parts must be counted at some 'level' of division into parts. An element can belong to many different sets.
9. Objects / F. Identity among Objects / 3. Relative Identity
Relative identity may reject transitivity, but that suggests that it isn't about 'identity' [Wasserman]
     Full Idea: If the relative identity theorist denies transitivity (to deal with the Ship of Theseus, for example), this would make us suspect that relativised identity relations are not identity relations, since transitivity seems central to identity.
     From: Ryan Wasserman (Material Constitution [2009], 6)
     A reaction: The problem here, I think, focuses on the meaning of the word 'same'. One change of plank leaves you with the same ship, but that is not transitive. If 'identical' is too pure to give the meaning of 'the same' it's not much use in discussing the world.