Combining Texts

All the ideas for 'Philosophical Fragments', 'The Consolations of Philosophy' and 'Introducing the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


64 ideas

2. Reason / D. Definition / 8. Impredicative Definition
An 'impredicative' definition seems circular, because it uses the term being defined [Friend]
     Full Idea: An 'impredicative' definition is one that uses the terms being defined in order to give the definition; in some way the definition is then circular.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], Glossary)
     A reaction: There has been a big controversy in the philosophy of mathematics over these. Shapiro gives the definition of 'village idiot' (which probably mentions 'village') as an example.
2. Reason / D. Definition / 10. Stipulative Definition
Classical definitions attempt to refer, but intuitionist/constructivist definitions actually create objects [Friend]
     Full Idea: In classical logic definitions are thought of as revealing our attempts to refer to objects, ...but for intuitionist or constructivist logics, if our definitions do not uniquely characterize an object, we are not entitled to discuss the object.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.4)
     A reaction: In defining a chess piece we are obviously creating. In defining a 'tree' we are trying to respond to fact, but the borderlines are vague. Philosophical life would be easier if we were allowed a mixture of creation and fact - so let's have that.
2. Reason / E. Argument / 5. Reductio ad Absurdum
Reductio ad absurdum proves an idea by showing that its denial produces contradiction [Friend]
     Full Idea: Reductio ad absurdum arguments are ones that start by denying what one wants to prove. We then prove a contradiction from this 'denied' idea and more reasonable ideas in one's theory, showing that we were wrong in denying what we wanted to prove.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is a mathematical definition, which rests on logical contradiction, but in ordinary life (and philosophy) it would be enough to show that denial led to absurdity, rather than actual contradiction.
3. Truth / A. Truth Problems / 8. Subjective Truth
Anti-realists see truth as our servant, and epistemically contrained [Friend]
     Full Idea: For the anti-realist, truth belongs to us, it is our servant, and as such, it must be 'epistemically constrained'.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: Put as clearly as this, it strikes me as being utterly and spectacularly wrong, a complete failure to grasp the elementary meaning of a concept etc. etc. If we aren't the servants of truth then we jolly we ought to be. Truth is above us.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
In classical/realist logic the connectives are defined by truth-tables [Friend]
     Full Idea: In the classical or realist view of logic the meaning of abstract symbols for logical connectives is given by the truth-tables for the symbol.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007])
     A reaction: Presumably this is realist because it connects them to 'truth', but only if that involves a fairly 'realist' view of truth. You could, of course, translate 'true' and 'false' in the table to empty (formalist) symbols such a 0 and 1. Logic is electronics.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Double negation elimination is not valid in intuitionist logic [Friend]
     Full Idea: In intuitionist logic, if we do not know that we do not know A, it does not follow that we know A, so the inference (and, in general, double negation elimination) is not intuitionistically valid.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: That inference had better not be valid in any logic! I am unaware of not knowing the birthday of someone I have never heard of. Propositional attitudes such as 'know' are notoriously difficult to explain in formal logic.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic was developed for fictional or non-existent objects [Friend]
     Full Idea: Free logic is especially designed to help regiment our reasoning about fictional objects, or nonexistent objects of some sort.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.7)
     A reaction: This makes it sound marginal, but I wonder whether existential commitment shouldn't be eliminated from all logic. Why do fictional objects need a different logic? What logic should we use for Robin Hood, if we aren't sure whether or not he is real?
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'proper subset' of A contains only members of A, but not all of them [Friend]
     Full Idea: A 'subset' of A is a set containing only members of A, and a 'proper subset' is one that does not contain all the members of A. Note that the empty set is a subset of every set, but it is not a member of every set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Is it the same empty set in each case? 'No pens' is a subset of 'pens', but is it a subset of 'paper'? Idea 8219 should be borne in mind when discussing such things, though I am not saying I agree with it.
A 'powerset' is all the subsets of a set [Friend]
     Full Idea: The 'powerset' of a set is a set made up of all the subsets of a set. For example, the powerset of {3,7,9} is {null, {3}, {7}, {9}, {3,7}, {3,9}, {7,9}, {3,7,9}}. Taking the powerset of an infinite set gets us from one infinite cardinality to the next.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Note that the null (empty) set occurs once, but not in the combinations. I begin to have queasy sympathies with the constructivist view of mathematics at this point, since no one has the time, space or energy to 'take' an infinite powerset.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Set theory makes a minimum ontological claim, that the empty set exists [Friend]
     Full Idea: As a realist choice of what is basic in mathematics, set theory is rather clever, because it only makes a very simple ontological claim: that, independent of us, there exists the empty set. The whole hierarchy of finite and infinite sets then follows.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Even so, for non-logicians the existence of the empty set is rather counterintuitive. "There was nobody on the road, so I overtook him". See Ideas 7035 and 8322. You might work back to the empty set, but how do you start from it?
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Infinite sets correspond one-to-one with a subset [Friend]
     Full Idea: Two sets are the same size if they can be placed in one-to-one correspondence. But even numbers have one-to-one correspondence with the natural numbers. So a set is infinite if it has one-one correspondence with a proper subset.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Dedekind's definition. We can match 1 with 2, 2 with 4, 3 with 6, 4 with 8, etc. Logicians seem happy to give as a definition anything which fixes the target uniquely, even if it doesn't give the essence. See Frege on 0 and 1, Ideas 8653/4.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend]
     Full Idea: Zermelo-Fraenkel and Gödel-Bernays set theory differ over the notions of ordinal construction and over the notion of class, among other things. Then there are optional axioms which can be attached, such as the axiom of choice and the axiom of infinity.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.6)
     A reaction: This summarises the reasons why we cannot just talk about 'set theory' as if it was a single concept. The philosophical interest I would take to be found in disentangling the ontological commitments of each version.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle is syntactic; it just says A or not-A, not whether they are true or false [Friend]
     Full Idea: The law of excluded middle is purely syntactic: it says for any well-formed formula A, either A or not-A. It is not a semantic law; it does not say that either A is true or A is false. The semantic version (true or false) is the law of bivalence.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: No wonder these two are confusing, sufficiently so for a lot of professional philosophers to blur the distinction. Presumably the 'or' is exclusive. So A-and-not-A is a contradiction; but how do you explain a contradiction without mentioning truth?
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Intuitionists read the universal quantifier as "we have a procedure for checking every..." [Friend]
     Full Idea: In the intuitionist version of quantification, the universal quantifier (normally read as "all") is understood as "we have a procedure for checking every" or "we have checked every".
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.5)
     A reaction: It seems better to describe this as 'verificationist' (or, as Dummett prefers, 'justificationist'). Intuition suggests an ability to 'see' beyond the evidence. It strikes me as bizarre to say that you can't discuss things you can't check.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend]
     Full Idea: The realist meets the Burali-Forti paradox by saying that all the ordinals are a 'class', not a set. A proper class is what we discuss when we say "all" the so-and-sos when they cannot be reached by normal set-construction. Grammar is their only limit.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This strategy would be useful for Class Nominalism, which tries to define properties in terms of classes, but gets tangled in paradoxes. But why bother with strict sets if easy-going classes will do just as well? Descartes's Dream: everything is rational.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox asks whether the set of all ordinals is itself an ordinal [Friend]
     Full Idea: The Burali-Forti paradox says that if ordinals are defined by 'gathering' all their predecessors with the empty set, then is the set of all ordinals an ordinal? It is created the same way, so it should be a further member of this 'complete' set!
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is an example (along with Russell's more famous paradox) of the problems that began to appear in set theory in the early twentieth century. See Idea 8675 for a modern solution.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The 'integers' are the positive and negative natural numbers, plus zero [Friend]
     Full Idea: The set of 'integers' is all of the negative natural numbers, and zero, together with the positive natural numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Zero always looks like a misfit at this party. Credit and debit explain positive and negative nicely, but what is the difference between having no money, and money being irrelevant? I can be 'broke', but can the North Pole be broke?
The 'rational' numbers are those representable as fractions [Friend]
     Full Idea: The 'rational' numbers are all those that can be represented in the form m/n (i.e. as fractions), where m and n are natural numbers different from zero.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Pythagoreans needed numbers to stop there, in order to represent the whole of reality numerically. See irrational numbers for the ensuing disaster. How can a universe with a finite number of particles contain numbers that are not 'rational'?
A number is 'irrational' if it cannot be represented as a fraction [Friend]
     Full Idea: A number is 'irrational' just in case it cannot be represented as a fraction. An irrational number has an infinite non-repeating decimal expansion. Famous examples are pi and e.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: There must be an infinite number of irrational numbers. You could, for example, take the expansion of pi, and change just one digit to produce a new irrational number, and pi has an infinity of digits to tinker with.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
The natural numbers are primitive, and the ordinals are up one level of abstraction [Friend]
     Full Idea: The natural numbers are quite primitive, and are what we first learn about. The order of objects (the 'ordinals') is one level of abstraction up from the natural numbers: we impose an order on objects.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: Note the talk of 'levels of abstraction'. So is there a first level of abstraction? Dedekind disagrees with Friend (Idea 7524). I would say that natural numbers are abstracted from something, but I'm not sure what. See Structuralism in maths.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Cardinal numbers answer 'how many?', with the order being irrelevant [Friend]
     Full Idea: The 'cardinal' numbers answer the question 'How many?'; the order of presentation of the objects being counted as immaterial. Def: the cardinality of a set is the number of members of the set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: If one asks whether cardinals or ordinals are logically prior (see Ideas 7524 and 8661), I am inclined to answer 'neither'. Presenting them as answers to the questions 'how many?' and 'which comes first?' is illuminating.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The 'real' numbers (rationals and irrationals combined) is the Continuum, which has no gaps [Friend]
     Full Idea: The set of 'real' numbers, which consists of the rational numbers and the irrational numbers together, represents "the continuum", since it is like a smooth line which has no gaps (unlike the rational numbers, which have the irrationals missing).
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: The Continuum is the perfect abstract object, because a series of abstractions has arrived at a vast limit in its nature. It still has dizzying infinities contained within it, and at either end of the line. It makes you feel humble.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Raising omega to successive powers of omega reveal an infinity of infinities [Friend]
     Full Idea: After the multiples of omega, we can successively raise omega to powers of omega, and after that is done an infinite number of times we arrive at a new limit ordinal, which is called 'epsilon'. We have an infinite number of infinite ordinals.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: When most people are dumbstruck by the idea of a single infinity, Cantor unleashes an infinity of infinities, which must be the highest into the stratosphere of abstract thought that any human being has ever gone.
The first limit ordinal is omega (greater, but without predecessor), and the second is twice-omega [Friend]
     Full Idea: The first 'limit ordinal' is called 'omega', which is ordinal because it is greater than other numbers, but it has no immediate predecessor. But it has successors, and after all of those we come to twice-omega, which is the next limit ordinal.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: This is the gateway to Cantor's paradise of infinities, which Hilbert loved and defended. Who could resist the pleasure of being totally boggled (like Aristotle) by a concept such as infinity, only to have someone draw a map of it? See 8663 for sequel.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Between any two rational numbers there is an infinite number of rational numbers [Friend]
     Full Idea: Since between any two rational numbers there is an infinite number of rational numbers, we could consider that we have infinity in three dimensions: positive numbers, negative numbers, and the 'depth' of infinite numbers between any rational numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: This is before we even reach Cantor's staggering infinities (Ideas 8662 and 8663), which presumably reside at the outer reaches of all three of these dimensions of infinity. The 'deep' infinities come from fractions with huge denominators.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Is mathematics based on sets, types, categories, models or topology? [Friend]
     Full Idea: Successful competing founding disciplines in mathematics include: the various set theories, type theory, category theory, model theory and topology.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Or none of the above? Set theories are very popular. Type theory is, apparently, discredited. Shapiro has a version of structuralism based on model theory (which sound promising). Topology is the one that intrigues me...
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical theories can be translated into the language of set theory [Friend]
     Full Idea: Most of mathematics can be faithfully redescribed by classical (realist) set theory. More precisely, we can translate other mathematical theories - such as group theory, analysis, calculus, arithmetic, geometry and so on - into the language of set theory.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is why most mathematicians seem to regard set theory as foundational. We could also translate football matches into the language of atomic physics.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The number 8 in isolation from the other numbers is of no interest [Friend]
     Full Idea: There is no interest for the mathematician in studying the number 8 in isolation from the other numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This is a crucial and simple point (arising during a discussion of Shapiro's structuralism). Most things are interesting in themselves, as well as for their relationships, but mathematical 'objects' just are relationships.
In structuralism the number 8 is not quite the same in different structures, only equivalent [Friend]
     Full Idea: Structuralists give a historical account of why the 'same' number occupies different structures. Numbers are equivalent rather than identical. 8 is the immediate predecessor of 9 in the whole numbers, but in the rationals 9 has no predecessor.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: I don't become a different person if I move from a detached house to a terraced house. This suggests that 8 can't be entirely defined by its relations, and yet it is hard to see what its intrinsic nature could be, apart from the units which compose it.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Are structures 'ante rem' (before reality), or are they 'in re' (grounded in physics)? [Friend]
     Full Idea: Structuralists disagree over whether objects in structures are 'ante rem' (before reality, existing independently of whether the objects exist) or 'in re' (in reality, grounded in the real world, usually in our theories of physics).
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: Shapiro holds the first view, Hellman and Resnik the second. The first view sounds too platonist and ontologically extravagant; the second sounds too contingent and limited. The correct account is somewhere in abstractions from the real.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralist says maths concerns concepts about base objects, not base objects themselves [Friend]
     Full Idea: According to the structuralist, mathematicians study the concepts (objects of study) such as variable, greater, real, add, similar, infinite set, which are one level of abstraction up from prima facie base objects such as numbers, shapes and lines.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: This still seems to imply an ontology in which numbers, shapes and lines exist. I would have thought you could eliminate the 'base objects', and just say that the concepts are one level of abstraction up from the physical world.
Structuralism focuses on relations, predicates and functions, with objects being inessential [Friend]
     Full Idea: Structuralism says we study whole structures: objects together with their predicates, relations that bear between them, and functions that take us from one domain of objects to a range of other objects. The objects can even be eliminated.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: The unity of object and predicate is a Quinean idea. The idea that objects are inessential is the dramatic move. To me the proposal has very strong intuitive appeal. 'Eight' is meaningless out of context. Ordinality precedes cardinality? Ideas 7524/8661.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
'In re' structuralism says that the process of abstraction is pattern-spotting [Friend]
     Full Idea: In the 'in re' version of mathematical structuralism, pattern-spotting is the process of abstraction.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This might work for non-mathematical abstraction as well, if we are allowed to spot patterns within sensual experience, and patterns within abstractions. Properties are causal patterns in the world? No - properties cause patterns.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend]
     Full Idea: The main philosophical problem with the position of platonism or realism is the epistemic problem: of explaining what perception or intuition consists in; how it is possible that we should accurately detect whatever it is we are realists about.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.5)
     A reaction: The best bet, I suppose, is that the mind directly perceives concepts just as eyes perceive the physical (see Idea 8679), but it strikes me as implausible. If we have to come up with a special mental faculty for an area of knowledge, we are in trouble.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Mathematics should be treated as true whenever it is indispensable to our best physical theory [Friend]
     Full Idea: Central to naturalism about mathematics are 'indispensability arguments', to the effect that some part of mathematics is indispensable to our best physical theory, and therefore we ought to take that part of mathematics to be true.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.1)
     A reaction: Quine and Putnam hold this view; Field challenges it. It has the odd consequence that the dispensable parts (if they can be identified!) do not need to be treated as true (even though they might follow logically from the dispensable parts!). Wrong!
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend]
     Full Idea: There are not enough constraints in the Formalist view of mathematics, so there is no way to select a direction for trying to develop mathematics. There is no part of mathematics that is more important than another.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.6)
     A reaction: One might reply that an area of maths could be 'important' if lots of other areas depended on it, and big developments would ripple big changes through the interior of the subject. Formalism does, though, seem to reduce maths to a game.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Constructivism rejects too much mathematics [Friend]
     Full Idea: Too much of mathematics is rejected by the constructivist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: This was Hilbert's view. This seems to be generally true of verificationism. My favourite example is that legitimate speculations can be labelled as meaningless.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists typically retain bivalence but reject the law of excluded middle [Friend]
     Full Idea: An intuitionist typically retains bivalence, but rejects the law of excluded middle.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: The idea would be to say that only T and F are available as truth-values, but failing to be T does not ensure being F, but merely not-T. 'Unproven' is not-T, but may not be F.
7. Existence / A. Nature of Existence / 5. Reason for Existence
I assume existence, rather than reasoning towards it [Kierkegaard]
     Full Idea: I always reason from existence, not towards existence.
     From: Søren Kierkegaard (Philosophical Fragments [1844], p.40)
     A reaction: Kierkegaard's important premise to help show that theistic proofs for God's existence don't actually prove existence, but develop the content of a conception. [SY]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Structuralists call a mathematical 'object' simply a 'place in a structure' [Friend]
     Full Idea: What the mathematician labels an 'object' in her discipline, is called 'a place in a structure' by the structuralist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.5)
     A reaction: This is a strategy for dispersing the idea of an object in the world of thought, parallel to attempts to eliminate them from physical ontology (e.g. Idea 614).
10. Modality / A. Necessity / 2. Nature of Necessity
Nothing necessary can come into existence, since it already 'is' [Kierkegaard]
     Full Idea: Can the necessary come into existence? That is a change, and everything that comes into existence demonstrates that it is not necessary. The necessary already 'is'.
     From: Søren Kierkegaard (Philosophical Fragments [1844], p.74)
     A reaction: [SY]
11. Knowledge Aims / A. Knowledge / 2. Understanding
Reasoning relates to understanding as time does to eternity [Boethius, by Sorabji]
     Full Idea: Boethius says that reasoning [ratiocinatio] is related to intellectual understanding [intellectus] as time to eternity, involving as it does movement from one stage to another.
     From: report of Boethius (The Consolations of Philosophy [c.520], 4, prose 6) by Richard Sorabji - Rationality 'Shifting'
     A reaction: This gives true understanding a quasi-religious aura, as befits a subject which is truly consoling.
16. Persons / F. Free Will / 1. Nature of Free Will
Knowledge of present events doesn't make them necessary, so future events are no different [Boethius]
     Full Idea: Just as the knowledge of present things imposes no necessity on what is happening, so foreknowledge imposes no necessity on what is going to happen.
     From: Boethius (The Consolations of Philosophy [c.520], V.IV)
     A reaction: This, I think, is the key idea if you are looking for a theological answer to the theological problem of free will. Don't think of God as seeing the future 'now'. God is outside time, and so only observes all of history just as we observe the present.
16. Persons / F. Free Will / 2. Sources of Free Will
Rational natures require free will, in order to have power of judgement [Boethius]
     Full Idea: There is freedom of the will, for it would be impossible for any rational nature to exist without it. Whatever by nature has the use of reason has the power of judgement to decide each matter.
     From: Boethius (The Consolations of Philosophy [c.520], V.II)
     A reaction: A view taken up by Aquinas (Idea 1849) and Kant (Idea 3740). The 'power of judgement' pinpoints the core of rationality, and it is not clear how a robot could fulfil such a power, if it lacked consciousness. Does a machine 'judge' barcodes?
16. Persons / F. Free Will / 6. Determinism / a. Determinism
God's universal foreknowledge seems opposed to free will [Boethius]
     Full Idea: God's universal foreknowledge and freedom of the will seem clean contrary and opposite.
     From: Boethius (The Consolations of Philosophy [c.520], V.III)
     A reaction: The original source of the great theological and philosophical anguish over free will. The problem is anything which fixes future facts, be it oracular knowledge or scientific prediction. Personally I think free will was an invention by religions.
Does foreknowledge cause necessity, or necessity cause foreknowledge? [Boethius]
     Full Idea: Does foreknowledge of the future cause the necessity of events, or necessity cause the foreknowledge?
     From: Boethius (The Consolations of Philosophy [c.520], V.III)
     A reaction: An intriguing question, though not one that bothers me. I don't understand how foreknowledge causes necessity, unless God's vision of the future is a kind of 'freezing ray'. Even the gods must bow to necessity (Idea 3016).
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Studying biology presumes the laws of chemistry, and it could never contradict them [Friend]
     Full Idea: In the hierarchy of reduction, when we investigate questions in biology, we have to assume the laws of chemistry but not of economics. We could never find a law of biology that contradicted something in physics or in chemistry.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.1)
     A reaction: This spells out the idea that there is a direction of dependence between aspects of the world, though we should be cautious of talking about 'levels' (see Idea 7003). We cannot choose the direction in which reduction must go.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Concepts can be presented extensionally (as objects) or intensionally (as a characterization) [Friend]
     Full Idea: The extensional presentation of a concept is just a list of the objects falling under the concept. In contrast, an intensional presentation of a concept gives a characterization of the concept, which allows us to pick out which objects fall under it.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.4)
     A reaction: Logicians seem to favour the extensional view, because (in the standard view) sets are defined simply by their members, so concepts can be explained using sets. I take this to be a mistake. The intensional view seems obviously prior.
20. Action / C. Motives for Action / 3. Acting on Reason / b. Intellectualism
The wicked want goodness, so they would not be wicked if they obtained it [Boethius]
     Full Idea: If the wicked obtained what they want - that is goodness - they could not be wicked.
     From: Boethius (The Consolations of Philosophy [c.520], IV.II)
     A reaction: This is a nice paradox which arises from Boethius being, like Socrates, an intellectualist. The question is whether the wicked want the good de re or de dicto. If they wanted to good de re (as its true self) they would obviously not be wicked.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / g. Moral responsibility
Rewards and punishments are not deserved if they don't arise from free movement of the mind [Boethius]
     Full Idea: If there is no free will, then in vain is reward offered to the good and punishment to the bad, because they have not been deserved by any free and willed movement of the mind.
     From: Boethius (The Consolations of Philosophy [c.520], V.III)
     A reaction: I just don't see why decisions have to come out of nowhere in order to have any merit. People are different from natural forces, because the former can be persuaded by reasons. A moral agent is a mechanism which decides according to reasons.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
When people fall into wickedness they lose their human nature [Boethius]
     Full Idea: When people fall into wickedness they lose their human nature.
     From: Boethius (The Consolations of Philosophy [c.520], IV.III)
     A reaction: This is a view I find quite sympathetic, but which is a million miles from the modern view. Today's paper showed a picture of a famous criminal holding a machine gun and a baby. We seem to delight in the idea that human nature is partly wicked.
22. Metaethics / C. The Good / 2. Happiness / a. Nature of happiness
Happiness is a good which once obtained leaves nothing more to be desired [Boethius]
     Full Idea: Happiness is a good which once obtained leaves nothing more to be desired.
     From: Boethius (The Consolations of Philosophy [c.520], III.I)
     A reaction: This sounds like the ancient 'eudaimonism' of Socrates and Aristotle, which might not be entirely compatible with orthodox Christianity. It is not true, though, that happy people lack ambition. To be happy, an unfilfilled aim may be needed.
23. Ethics / C. Virtue Theory / 1. Virtue Theory / a. Nature of virtue
The bad seek the good through desire, but the good through virtue, which is more natural [Boethius]
     Full Idea: The supreme good is the goal of good men and bad men alike, and the good seek it by means of a natural activity - the exercise of virtue - while the bad strive to acquire it by means of their desires, which is not a natural way of obtaining the good.
     From: Boethius (The Consolations of Philosophy [c.520], IV.II)
     A reaction: Interesting here is the slightly surprising claim that the pursuit of virtue is 'natural', implying that the mere pursuit of desire is not. Doesn't nature have to be restrained to achieve the good? Boethius is in the tradition of Aristotle and stoicism.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / j. Unity of virtue
Varied aims cannot be good because they differ, but only become good when they unify [Boethius]
     Full Idea: The various things that men pursue are not perfect and good, because they differ from one another; ..when they differ they are not good, but when they begin to be one they become good, so it is through the acquisition of unity that these things are good.
     From: Boethius (The Consolations of Philosophy [c.520], III.XI)
     A reaction: This is a criticism of Aristotle's pluralism about the good(s) for man. Boethius' thought is appealing, and ties in with the Socratic notion that the virtues might be unified in some way. I think it is right that true virtues merge together, ideally.
25. Social Practice / A. Freedoms / 2. Freedom of belief
You can't control someone's free mind, only their body and possessions [Boethius]
     Full Idea: The only way one man can exercise power over another is over his body and what is inferior to it, his possessions. You cannot impose anything on a free mind.
     From: Boethius (The Consolations of Philosophy [c.520], II.VI)
     A reaction: Written, of course, in prison. Boethius had not met hypnotism, or mind-controlling drugs, or invasive brain surgery. He hadn't read '1984'. He hadn't seen 'The Ipcress File'. (In fact, he should have got out more…)
28. God / A. Divine Nature / 5. God and Time
Divine eternity is the all-at-once and complete possession of unending life [Boethius]
     Full Idea: Divine eternity is the all-at-once [tota simul] and complete possession of unending life.
     From: Boethius (The Consolations of Philosophy [c.520], V.6), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 18.1
     A reaction: This is a famous definition, and 'tota simul' became the phrase used for 'entia successiva', such as a day, or the Olympic Games.
28. God / A. Divine Nature / 6. Divine Morality / a. Divine morality
Where does evil come from if there is a god; where does good come from if there isn't? [Boethius]
     Full Idea: A philosopher (possibly Epicurus) asked where evil comes from if there is a god, and where good comes from if there isn't.
     From: Boethius (The Consolations of Philosophy [c.520], I.IV)
     A reaction: A nice question. The best known answer to the first question is 'Satan'. Some would say that in the second case good is impossible, but I would have thought that the only possible answer is 'mankind'.
28. God / A. Divine Nature / 6. Divine Morality / c. God is the good
God is the good [Boethius]
     Full Idea: God is the good.
     From: Boethius (The Consolations of Philosophy [c.520], III.XI)
     A reaction: This summary follows on from the rather dubious discussion in Idea 5757. If God IS the good, it is not clear how God could be usefully described as 'good'. We would know that he was good a priori, without any enquiry into his nature being needed.
God is the supreme good, so no source of goodness could take precedence over God [Boethius]
     Full Idea: That which by its own nature is something distinct from supreme good, cannot be supreme good. ..It is impossible for anything to be by nature better than that from which it is derived, so that which is the origin of all things is supreme good.
     From: Boethius (The Consolations of Philosophy [c.520], III.X)
     A reaction: This is the contortion early Christians got into once they decided God had to be 'supreme' in the moral world (and every other world). Boethius allows a possible external source of all morality, but then has to say that this source is morally inferior.
28. God / B. Proving God / 3. Proofs of Evidence / a. Cosmological Proof
The power through which creation remains in existence and motion I call 'God' [Boethius]
     Full Idea: For this power, whatever it is, through which creation remains in existence and in motion, I use the word which all people use, namely God.
     From: Boethius (The Consolations of Philosophy [c.520], III.XII)
     A reaction: An interesting caution in the phrase 'whatever it is'. Boethius would have been very open-minded in discussion with modern science about the stability of nature. Personally I reject Boethius' theory, but don't have a better one. Cf Idea 1431.
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
The regular events of this life could never be due to chance [Boethius]
     Full Idea: I could never believe that events of such regularity as we find in this life are due to the haphazards of chance.
     From: Boethius (The Consolations of Philosophy [c.520], I.VI)
     A reaction: It depends what you mean by 'chance'. Boethius infers a conscious mind, and presumes this to be God, but that is two large and unsupported steps. Modern atheists must acknowledge Boethius' problem. Why is there order?
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The reward of the good is to become gods [Boethius]
     Full Idea: Goodness is happiness, ..but we agree that those who attain happiness are divine. The reward of the good, then, is to become gods.
     From: Boethius (The Consolations of Philosophy [c.520], IV.III)
     A reaction: Kant offered a similar argument (see Idea 1455). Most of us are unlikely to agree with the second premise of Boethius' argument. The idea that we might somehow become gods gripped the imagination for the next thousand years.
29. Religion / D. Religious Issues / 3. Problem of Evil / a. Problem of Evil
God can do anything, but he cannot do evil, so evil must be nothing [Boethius]
     Full Idea: 'There is nothing that an omnipotent power could not do?' 'No.' 'Then can God do evil?' 'No.' 'So evil is nothing, since that is what He cannot do who can do anthing.'
     From: Boethius (The Consolations of Philosophy [c.520], III.XII)
     A reaction: A lovely example of the contortions necessary once you insist that God must be 'omnipotent', in some absolute sense of the term. Saying that evil is 'nothing' strikes me as nothing more than a feeble attempt to insult it.
If you could see the plan of Providence, you would not think there was evil anywhere [Boethius]
     Full Idea: If you could see the plan of Providence, you would not think there was evil anywhere.
     From: Boethius (The Consolations of Philosophy [c.520], IV.VI)
     A reaction: This brings out the verificationist in me. See Idea 1467, by Antony Flew. Presumably Boethius would retain his faith as Europe moved horribly from 1939 to 1945, and even if the whole of humanity sank into squalid viciousness.