Combining Texts

All the ideas for 'Works of Love', 'Beginning Logic' and 'Necessity and Non-Existence'

unexpand these ideas     |    start again     |     specify just one area for these texts


69 ideas

3. Truth / B. Truthmakers / 5. What Makes Truths / a. What makes truths
Some sentences depend for their truth on worldly circumstances, and others do not [Fine,K]
     Full Idea: There is a distinction between worldly and unworldly sentences, between sentences that depend for their truth upon the worldly circumstances and those that do not.
     From: Kit Fine (Necessity and Non-Existence [2005], Intro)
     A reaction: Fine is fishing around in the area between the necessary, the a priori, truthmakers, and truth-conditions. He appears to be attempting a singlehanded reconstruction of the concepts of metaphysics. Is he major, or very marginal?
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
     Full Idea: Two propositions are 'contradictory' if they are never both true and never both false either, which means that ¬(A↔B) is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
     Full Idea: We write 'if P then Q' as P→Q. This is called a 'conditional', with P as its 'antecedent', and Q as its 'consequent'.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: P→Q can also be written as ¬P∨Q.
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
     Full Idea: If P and Q are any two propositions, the proposition that either P or Q is called the 'disjunction' of P and Q, and is written P∨Q.
     From: E.J. Lemmon (Beginning Logic [1965], 1.3)
     A reaction: This is inclusive-or (meaning 'P, or Q, or both'), and not exlusive-or (Boolean XOR), which means 'P, or Q, but not both'. The ∨ sign is sometimes called 'vel' (Latin).
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
     Full Idea: If P and Q are any two propositions, the proposition that both P and Q is called the 'conjunction' of P and Q, and is written P∧Q.
     From: E.J. Lemmon (Beginning Logic [1965], 1.3)
     A reaction: [I use the more fashionable inverted-v '∧', rather than Lemmon's '&', which no longer seems to be used] P∧Q can also be defined as ¬(¬P∨¬Q)
The sign |- may be read as 'therefore' [Lemmon]
     Full Idea: I introduce the sign |- to mean 'we may validly conclude'. To call it the 'assertion sign' is misleading. It may conveniently be read as 'therefore'.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: [Actually no gap between the vertical and horizontal strokes of the sign] As well as meaning 'assertion', it may also mean 'it is a theorem that' (with no proof shown).
We write the 'negation' of P (not-P) as ¬ [Lemmon]
     Full Idea: We write 'not-P' as ¬P. This is called the 'negation' of P. The 'double negation' of P (not not-P) would be written as ¬¬P.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: Lemmons use of -P is no longer in use for 'not'. A tilde sign (squiggle) is also used for 'not', but some interpreters give that a subtly different meaning (involving vagueness). The sign ¬ is sometimes called 'hook' or 'corner'.
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
     Full Idea: We write 'P if and only if Q' as P↔Q. It is called the 'biconditional', often abbreviate in writing as 'iff'. It also says that P is both sufficient and necessary for Q, and may be written out in full as (P→Q)∧(Q→P).
     From: E.J. Lemmon (Beginning Logic [1965], 1.4)
     A reaction: If this symbol is found in a sequence, the first move in a proof is to expand it to the full version.
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
     Full Idea: If we say that A and B are 'interderivable' from one another (that is, A |- B and B |- A), then we may write A -||- B.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
     Full Idea: A 'well-formed formula' of the propositional calculus is a sequence of symbols which follows the rules for variables, ¬, →, ∧, ∨, and ↔.
     From: E.J. Lemmon (Beginning Logic [1965], 2.1)
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
     Full Idea: The 'scope' of a connective in a certain formula is the formulae linked by the connective, together with the connective itself and the (theoretically) encircling brackets
     From: E.J. Lemmon (Beginning Logic [1965], 2.1)
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
     Full Idea: A 'substitution-instance' is a wff which results by replacing one or more variables throughout with the same wffs (the same wff replacing each variable).
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes the value F for all possible assignments of truth-values to its variables, it is said to be 'inconsistent'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
     Full Idea: If A and B are expressible in propositional calculus notation, they are 'contrary' if they are never both true, which may be tested by the truth-table for ¬(A∧B), which is a tautology if they are contrary.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
     Full Idea: Two propositions are 'equivalent' if whenever A is true B is true, and whenever B is true A is true, in which case A↔B is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes at least one T and at least one F for all the assignments of truth-values to its variables, it is said to be 'contingent'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
     Full Idea: If A and B are expressible in propositional calculus notation, they are 'subcontrary' if they are never both false, which may be tested by the truth-table for A∨B, which is a tautology if they are subcontrary.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
     Full Idea: One proposition A 'implies' a proposition B if whenever A is true B is true (but not necessarily conversely), which is only the case if A→B is tautologous. Hence B 'is implied' by A.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes the value T for all possible assignments of truth-values to its variables, it is said to be a 'tautology'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
     Full Idea: A 'theorem' of logic is the conclusion of a provable sequent in which the number of assumptions is zero.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: This is what Quine and others call a 'logical truth'.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
∧I: Given A and B, we may derive A∧B [Lemmon]
     Full Idea: And-Introduction (&I): Given A and B, we may derive A∧B as conclusion. This depends on their previous assumptions.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
     Full Idea: Conditional Proof (CP): Given a proof of B from A as assumption, we may derive A→B as conclusion, on the remaining assumptions (if any).
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
MPP: Given A and A→B, we may derive B [Lemmon]
     Full Idea: Modus Ponendo Ponens (MPP): Given A and A→B, we may derive B as a conclusion. B will rest on any assumptions that have been made.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
     Full Idea: Or-Elimination (∨E): Given A∨B, we may derive C if it is proved from A as assumption and from B as assumption. This will also depend on prior assumptions.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
DN: Given A, we may derive ¬¬A [Lemmon]
     Full Idea: Double Negation (DN): Given A, we may derive ¬¬A as a conclusion, and vice versa. The conclusion depends on the assumptions of the premiss.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
A: we may assume any proposition at any stage [Lemmon]
     Full Idea: Assumptions (A): any proposition may be introduced at any stage of a proof.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
     Full Idea: And-Elimination (∧E): Given A∧B, we may derive either A or B separately. The conclusions will depend on the assumptions of the premiss.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
     Full Idea: Reduction ad Absurdum (RAA): Given a proof of B∧¬B from A as assumption, we may derive ¬A as conclusion, depending on the remaining assumptions (if any).
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
     Full Idea: Modus Tollendo Tollens (MTT): Given ¬B and A→B, we derive ¬A as a conclusion. ¬A depends on any assumptions that have been made
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
     Full Idea: Or-Introduction (∨I): Given either A or B separately, we may derive A∨B as conclusion. This depends on the assumption of the premisses.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
     Full Idea: 'Modus tollendo ponens' (MTP) says that if a disjunction holds and also the negation of one of its disjuncts, then the other disjunct holds. Thus ¬P, P ∨ Q |- Q may be introduced as a theorem.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: Unlike Modus Ponens and Modus Tollens, this is a derived rule.
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
     Full Idea: 'Modus ponendo tollens' (MPT) says that if the negation of a conjunction holds and also one of its conjuncts, then the negation of the other conjunct holds. Thus P, ¬(P ∧ Q) |- ¬Q may be introduced as a theorem.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: Unlike Modus Ponens and Modus Tollens, this is a derived rule.
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
     Full Idea: The proof that P→Q -||- ¬(P ∧ ¬Q) is useful for enabling us to change conditionals into negated conjunctions
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
     Full Idea: The proof that P→Q -||- ¬P ∨ Q is useful for enabling us to change conditionals into disjunctions.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
     Full Idea: The forms of De Morgan's Laws [P∨Q -||- ¬(¬P ∧ ¬Q); ¬(P∨Q) -||- ¬P ∧ ¬Q; ¬(P∧Q) -||- ¬P ∨ ¬Q); P∧Q -||- ¬(¬P∨¬Q)] transform negated conjunctions and disjunctions into non-negated disjunctions and conjunctions respectively.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
     Full Idea: The Distributive Laws say that P ∧ (Q∨R) -||- (P∧Q) ∨ (P∧R), and that P ∨ (Q∨R) -||- (P∨Q) ∧ (P∨R)
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
     Full Idea: The proof that P∧Q -||- ¬(P → ¬Q) is useful for enabling us to change conjunctions into negated conditionals.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
     Full Idea: The truth-table approach enables us to show the invalidity of argument-patterns, as well as their validity.
     From: E.J. Lemmon (Beginning Logic [1965], 2.4)
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
     Full Idea: A truth-table test is entirely mechanical, ..and in propositional logic we can even generate proofs mechanically for tautological sequences, ..but this mechanical approach breaks down with predicate calculus, and proof-discovery is an imaginative process.
     From: E.J. Lemmon (Beginning Logic [1965], 2.5)
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
     Full Idea: If any application of the nine derivation rules of propositional logic is made on tautologous sequents, we have demonstrated that the result is always a tautologous sequent. Thus the system is consistent.
     From: E.J. Lemmon (Beginning Logic [1965], 2.4)
     A reaction: The term 'sound' tends to be used now, rather than 'consistent'. See Lemmon for the proofs of each of the nine rules.
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
     Full Idea: A logical system is complete is all expressions of a specified kind are derivable in it. If we specify tautologous sequent-expressions, then propositional logic is complete, because we can show that all tautologous sequents are derivable.
     From: E.J. Lemmon (Beginning Logic [1965], 2.5)
     A reaction: [See Lemmon 2.5 for details of the proofs]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
     Full Idea: Just as '(∀x)(...)' is to mean 'take any x: then....', so we write '(∃x)(...)' to mean 'there is an x such that....'
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
     A reaction: [Actually Lemmon gives the universal quantifier symbol as '(x)', but the inverted A ('∀') seems to have replaced it these days]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
     Full Idea: A predicate letter followed by one name expresses a property ('Gm'), and a predicate-letter followed by two names expresses a relation ('Pmn'). We could write 'Pmno' for a complex relation like betweenness.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
     Full Idea: I define a 'symbol' (of the predicate calculus) as either a bracket or a logical connective or a term or an individual variable or a predicate-letter or reverse-E (∃).
     From: E.J. Lemmon (Beginning Logic [1965], 4.1)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
     Full Idea: Quantifier-notation might be thus: first, render into sentences about 'properties', and use 'predicate-letters' for them; second, introduce 'variables'; third, introduce propositional logic 'connectives' and 'quantifiers'. Plus letters for 'proper names'.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
     Full Idea: Our rule of universal quantifier elimination (UE) lets us infer that any particular object has F from the premiss that all things have F. It is a natural extension of &E (and-elimination), as universal propositions generally affirm a complex conjunction.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
     Full Idea: If there are just three objects and each has F, then by an extension of &I we are sure everything has F. This is of no avail, however, if our universe is infinitely large or if not all objects have names. We need a new device, Universal Introduction, UI.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
     Full Idea: Univ Elim UE - if everything is F, then something is F; Univ Intro UI - if an arbitrary thing is F, everything is F; Exist Intro EI - if an arbitrary thing is F, something is F; Exist Elim EE - if a proof needed an object, there is one.
     From: E.J. Lemmon (Beginning Logic [1965], 3.3)
     A reaction: [My summary of Lemmon's four main rules for predicate calculus] This is the natural deduction approach, of trying to present the logic entirely in terms of introduction and elimination rules. See Bostock on that.
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
     Full Idea: In predicate calculus we take over the propositional connectives and propositional variables - but we need additional rules for handling quantifiers: four rules, an introduction and elimination rule for the universal and existential quantifiers.
     From: E.J. Lemmon (Beginning Logic [1965])
     A reaction: This is Lemmon's natural deduction approach (invented by Gentzen), which is largely built on introduction and elimination rules.
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
     Full Idea: The elimination rule for the universal quantifier concerns the use of a universal proposition as a premiss to establish some conclusion, whilst the introduction rule concerns what is required by way of a premiss for a universal proposition as conclusion.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
     A reaction: So if you start with the universal, you need to eliminate it, and if you start without it you need to introduce it.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
     Full Idea: If all objects in a given universe had names which we knew and there were only finitely many of them, then we could always replace a universal proposition about that universe by a complex conjunction.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
     Full Idea: It is a common mistake to render 'some Frenchmen are generous' by (∃x)(Fx→Gx) rather than the correct (∃x)(Fx&Gx). 'All Frenchmen are generous' is properly rendered by a conditional, and true if there are no Frenchmen.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
     A reaction: The existential quantifier implies the existence of an x, but the universal quantifier does not.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
     Full Idea: The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q. That is, since Napoleon was French, then if the moon is blue then Napoleon was French; and since Napoleon was not Chinese, then if Napoleon was Chinese, the moon is blue.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: This is why the symbol → does not really mean the 'if...then' of ordinary English. Russell named it 'material implication' to show that it was a distinctively logical operator.
7. Existence / A. Nature of Existence / 2. Types of Existence
There are levels of existence, as well as reality; objects exist at the lowest level in which they can function [Fine,K]
     Full Idea: Just as we recognise different levels of reality, so we should recognise different levels of existence. Each object will exist at the lowest level at which it can enjoy its characteristic form of life.
     From: Kit Fine (Necessity and Non-Existence [2005], 10)
     A reaction: I'm struggling with this claim, despite my sympathy for much of Fine's picture. I'm not sure that the so-called 'levels' of reality have different degrees of reality.
7. Existence / D. Theories of Reality / 3. Reality
Bottom level facts are subject to time and world, middle to world but not time, and top to neither [Fine,K]
     Full Idea: At the bottom are tensed or temporal facts, subject to the vicissitudes of time and hence of the world. Then come the timeless though worldly facts, subject to the world but not to time. Top are transcendental facts, subject to neither world nor time.
     From: Kit Fine (Necessity and Non-Existence [2005], 08)
     A reaction: For all of Fine's awesome grasp of logic and semantics, when he divides reality up as boldly as this I start to side a bit with the sceptics about modern metaphysics (like Ladyman and Ross). I daresay Fine acknowledges that it is 'speculative'.
7. Existence / D. Theories of Reality / 8. Facts / b. Types of fact
Tensed and tenseless sentences state two sorts of fact, which belong to two different 'realms' of reality [Fine,K]
     Full Idea: A tensed fact is stated by a tensed sentence while a tenseless fact is stated by a tenseless sentence, and they belong to two 'realms' of reality. That Socrates drank hemlock is in the temporal realm, while 2+2=4 is presumably in the timeless realm.
     From: Kit Fine (Necessity and Non-Existence [2005], 07)
     A reaction: Put so strongly, I suddenly find sales resistance to his proposal. All my instincts favour one realm, and I take 2+2=4 to be a highly general truth about that realm. It may be a truth of any possible realm, which would distinguish it.
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
Modal features are not part of entities, because they are accounted for by the entity [Fine,K]
     Full Idea: It is natural to suggest that to be a man is to have certain kind of temporal-modal profile. ...but it seems natural that being a man accounts for the profile, ...so one should not appeal to an object's modal features in stating what the object is.
     From: Kit Fine (Necessity and Non-Existence [2005], 09)
     A reaction: This strikes me as a correct and very helpful point, as I am tempted to think that the modal dispositions of a thing are intrinsic to its identity. If we accept 'powers', must they be modal in character? Fine backs a sortal approach. That's ideology.
9. Objects / D. Essence of Objects / 6. Essence as Unifier
What it is is fixed prior to existence or the object's worldly features [Fine,K]
     Full Idea: The identity of an object - what it is - is not a worldly matter; essence will precede existence in that the identity of an object may be fixed by its unworldly features even before any question of its existence or other worldly features is considered.
     From: Kit Fine (Necessity and Non-Existence [2005], Intro)
     A reaction: I'm not clear how this cashes out. If I remove the 'worldly features' of an object, what is there left which establishes identity? Fine carefully avoids talk of 'a priori' knowledge of identity.
9. Objects / D. Essence of Objects / 9. Essence and Properties
Essential features of an object have no relation to how things actually are [Fine,K]
     Full Idea: It is the core essential features of the object that will be independent of how things turn out, and they will be independent in the sense of holding regardless of circumstances, not whatever the circumstances.
     From: Kit Fine (Necessity and Non-Existence [2005], 09)
     A reaction: The distinction at the end seems to be that 'regardless' pays no attention to circumstances, whereas 'whatever' pays attention to all circumstances. In other words, essence has no relationship to how things are. Plausible. Nice to see 'core'.
9. Objects / F. Identity among Objects / 5. Self-Identity
Self-identity should have two components, its existence, and its neutral identity with itself [Fine,K]
     Full Idea: The existential identity of an object with itself needs analysis into two components, one the neutral identity of the object with itself, and the other its existence. The existence of the object appears to be merely a gratuitous addition to its identity.
     From: Kit Fine (Necessity and Non-Existence [2005], 08)
     A reaction: This is at least a step towards clarification of the notion, which might be seen as just a way of asserting that something 'has an identity'. Fine likes the modern Fregean way of expressing this, as an equality relation.
9. Objects / F. Identity among Objects / 6. Identity between Objects
We would understand identity between objects, even if their existence was impossible [Fine,K]
     Full Idea: If there were impossible objects, ones that do not possibly exist, we would have no difficulty in understanding what it is for such objects to be identical or distinct than in the case of possible objects.
     From: Kit Fine (Necessity and Non-Existence [2005], 08)
     A reaction: Thus, a 'circular square' seems to be the same as a 'square circle'. Fine is arguing for identity to be independent of any questions of existence.
10. Modality / A. Necessity / 8. Transcendental Necessity
Proper necessary truths hold whatever the circumstances; transcendent truths regardless of circumstances [Fine,K]
     Full Idea: We distinguish between the necessary truths proper, those that hold whatever the circumstances, and the transcendent truths, those that hold regardless of the circumstances.
     From: Kit Fine (Necessity and Non-Existence [2005], Intro)
     A reaction: Fine's project seems to be dividing the necessities which derive from essence from the necessities which tended to be branded in essentialist discussions as 'trivial'.
10. Modality / C. Sources of Modality / 6. Necessity from Essence
It is the nature of Socrates to be a man, so necessarily he is a man [Fine,K]
     Full Idea: It is of the nature of Socrates to be a man; and from this it appears to follow that necessarily he is a man.
     From: Kit Fine (Necessity and Non-Existence [2005], 04)
     A reaction: I'm always puzzled by this line of thought, because it is only the intrinsic nature of beings like Socrates which decides in the first place what a 'man' is. How can something help to create a category, and then necessarily belong to that category?
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
Possible worlds may be more limited, to how things might actually turn out [Fine,K]
     Full Idea: An alternative conception of a possible world says it is constituted, not by the totality of facts, or of how things might be, but by the totality of circumstances, or how things might turn out.
     From: Kit Fine (Necessity and Non-Existence [2005], 02)
     A reaction: The general idea is to make a possible world more limited than in Idea 15068. It only contains properties arising from 'engagement with the world', and won't include timeless sentences. It is a bunch of possibilities, not of actualities?
The actual world is a totality of facts, so we also think of possible worlds as totalities [Fine,K]
     Full Idea: We are accustomed think of the actual world as the totality of facts, and so we think of any possible world as being like the actual world in settling the truth-value of every single proposition.
     From: Kit Fine (Necessity and Non-Existence [2005], 02)
     A reaction: Hence it is normal to refer to a possible world as a 'maximal' set of of propositions (sentences, etc). See Idea 15069 for his proposed alternative view.
22. Metaethics / B. Value / 2. Values / g. Love
Perfect love is not in spite of imperfections; the imperfections must be loved as well [Kierkegaard]
     Full Idea: To love another in spite of his weaknesses and errors and imperfections is not perfect love. No, to love is to find him lovable in spite of, and together with, his weaknesses and errors and imperfections.
     From: Søren Kierkegaard (Works of Love [1847], p.158)
     A reaction: A true romantic at heart, Kierkegaard ideally posits perfect love as unconditional love, and not just of good attributes, predicates and conditions. However, the real question for both me and Kierkegaard is, is perfect love desirable or even possible?[SY]
27. Natural Reality / D. Time / 2. Passage of Time / c. Tenses and time
It is said that in the A-theory, all existents and objects must be tensed, as well as the sentences [Fine,K]
     Full Idea: It is said that there is no room in the A-theorists' ontology for a realm of timeless existents. Just as there is a tendency to think that every sentence is tensed, so there is a tendency to think that every object must enjoy a tensed form of existence.
     From: Kit Fine (Necessity and Non-Existence [2005], 10)
     A reaction: Fine is arguing for certain things to exist or be true independently of time (such as arithmetic, or essential identities). I struggle with the notion of timeless existence.
A-theorists tend to reject the tensed/tenseless distinction [Fine,K]
     Full Idea: Most A-theorists have been inclined to reject the tensed/tenseless distinction.
     From: Kit Fine (Necessity and Non-Existence [2005], 01)
     A reaction: Presumably this is because they reject the notion of 'tenseless' truths. But sentences like 'two and two make four' seem not to be very tensy.
27. Natural Reality / D. Time / 2. Passage of Time / f. Tenseless (B) series
B-theorists say tensed sentences have an unfilled argument-place for a time [Fine,K]
     Full Idea: B-theorists regard tensed sentences as incomplete expressions, implicitly containing an unfilled argument-place for the time at which they are to be evaluated.
     From: Kit Fine (Necessity and Non-Existence [2005], 01)
     A reaction: To distinguish past from future it looks as if you would need two argument-places, not one. Then there are 'used to be' and 'had been' to evaluate.