Combining Texts

All the ideas for 'works', 'Higher-Order Logic' and 'Cantorian Abstraction: Recon. and Defence'

unexpand these ideas     |    start again     |     specify just one area for these texts


18 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice is controversial, but it could be replaced [Shapiro]
     Full Idea: The axiom of choice has a troubled history, but is now standard in mathematics. It could be replaced with a principle of comprehension for functions), or one could omit the variables ranging over functions.
     From: Stewart Shapiro (Higher-Order Logic [2001], n 3)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
     Full Idea: Early study of first-order logic revealed a number of important features. Gödel showed that there is a complete, sound and effective deductive system. It follows that it is Compact, and there are also the downward and upward Löwenheim-Skolem Theorems.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Some say that second-order logic is mathematics, not logic [Shapiro]
     Full Idea: Some authors argue that second-order logic (with standard semantics) is not logic at all, but is a rather obscure form of mathematics.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
     Full Idea: If the goal of logical study is to present a canon of inference, a calculus which codifies correct inference patterns, then second-order logic is a non-starter.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be because it is not 'complete'. However, moves like plural quantification seem aimed at capturing ordinary language inferences, so the difficulty is only that there isn't a precise 'calculus'.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
     Full Idea: Informally, logical consequence is sometimes defined in terms of the meanings of a certain collection of terms, the so-called 'logical terminology'.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be a compositional account, where we build a full account from an account of the atomic bits, perhaps presented as truth-tables.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
I think of variables as objects rather than as signs [Fine,K]
     Full Idea: It is natural nowadays to think of variables as a certain kind of sign, but I wish to think of them as a certain kind of object.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §2)
     A reaction: Fine has a theory based on 'arbitrary objects', which is a rather charming idea. The cell of a spreadsheet is a kind of object, I suppose. A variable might be analogous to a point in space, where objects can locate themselves.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
     Full Idea: Full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
     A reaction: [he credits Cowles for this remark] Having an unworkable model theory sounds pretty serious to me, as I'm not inclined to be interested in languages which don't produce models of some sort. Surely models are the whole point?
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
     Full Idea: In studying second-order logic one can think of relations and functions as extensional or intensional, or one can leave it open. Little turns on this here, and so words like 'property', 'class', and 'set' are used interchangeably.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.2.1)
     A reaction: Important. Students of the metaphysics of properties, who arrive with limited experience of logic, are bewildered by this attitude. Note that the metaphysics is left wide open, so never let logicians hijack the metaphysical problem of properties.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
If green is abstracted from a thing, it is only seen as a type if it is common to many things [Fine,K]
     Full Idea: In traditional abstraction, the colour green merely has the intrinsic property of being green, other properties of things being abstracted away. But why should that be regarded as a type? It must be because the property is common to the instances.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §5)
     A reaction: A nice question which shows that the much-derided single act of abstraction is not sufficient to arrive at a concept, so that abstraction is a more complex matter (perhaps even a rational one) than simple empiricists believe.
18. Thought / E. Abstraction / 2. Abstracta by Selection
To obtain the number 2 by abstraction, we only want to abstract the distinctness of a pair of objects [Fine,K]
     Full Idea: In abstracting from the elements of a doubleton to obtain 2, we do not wish to abstract away from all features of the objects. We wish to take account of the fact that the two objects are distinct; this alone should be preserved under abstraction.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §3)
     A reaction: This is Fine's strategy for meeting Frege's objection to abstraction, summarised in Idea 9146. It seems to use the common sense idea that abstraction is not all-or-nothing. Abstraction has degrees (and levels).
We should define abstraction in general, with number abstraction taken as a special case [Fine,K]
     Full Idea: Number abstraction can be taken to be a special case of abstraction in general, which can then be defined without recourse to the concept of number.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §3)
     A reaction: At last, a mathematical logician recognising that they don't have a monopoly on abstraction. It is perfectly obvious that abstractions of simple daily concepts must be chronologically and logically prior to number abstraction. Number of what?
18. Thought / E. Abstraction / 8. Abstractionism Critique
After abstraction all numbers seem identical, so only 0 and 1 will exist! [Fine,K]
     Full Idea: In Cantor's abstractionist account there can only be two numbers, 0 and 1. For abs(Socrates) = abs(Plato), since their numbers are the same. So the number of {Socrates,Plato} is {abs(Soc),abs(Plato)}, which is the same number as {Socrates}!
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §1)
     A reaction: Fine tries to answer this objection, which arises from §45 of Frege's Grundlagen. Fine summarises that "indistinguishability without identity appears to be impossible". Maybe we should drop talk of numbers in terms of sets.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
The most important aspect of a human being is not reason, but passion [Kierkegaard, by Carlisle]
     Full Idea: Kierkegaard insisted that the most important aspect of a human being is not reason, but passion.
     From: report of Søren Kierkegaard (works [1845]) by Clare Carlisle - Kierkegaard: a guide for the perplexed Intro
     A reaction: Hume comes to mind for a similar view, but in character Hume was far more rational than Kierkegaard.