Combining Texts

All the ideas for 'works', 'Mr Strawson on Referring' and 'Introduction to the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Common speech is vague; its vocabulary and syntax must be modified, for precision [Russell]
     Full Idea: I am persuaded that common speech is full of vagueness and inaccuracy, and that any attempt to be precise and accurate requires modification of common speech both as regards vocabulary and as regards syntax.
     From: Bertrand Russell (Mr Strawson on Referring [1957], p.123)
     A reaction: It is interesting that he cites the syntax of ordinary language, as well as the vocabulary. The implication is that vagueness can also be a feature of syntax (and hence his pursuit of logical form), which is not normally mentioned
2. Reason / D. Definition / 11. Ostensive Definition
Empirical words need ostensive definition, which makes them egocentric [Russell]
     Full Idea: The meanings of all empirical words depend ultimately upon ostensive definitions, ostensive definitions depend upon experience, and that experience is egocentric.
     From: Bertrand Russell (Mr Strawson on Referring [1957], p.122)
     A reaction: He seems to imply that this makes them partly subjective, but I don't see why an objective consensus can't be reached when making an ostensive definition. We just need to clearly agree what 'that' refers to.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
15. Nature of Minds / B. Features of Minds / 2. Unconscious Mind
Freud treats the unconscious as intentional and hence mental [Freud, by Searle]
     Full Idea: Freud thinks that our unconscious mental states exist as occurrent intrinsic intentional states even when unconscious. Their ontology is that of the mental, even when they are unconscious.
     From: report of Sigmund Freud (works [1900]) by John Searle - The Rediscovery of the Mind Ch. 7.V
     A reaction: Searle states this view in order to attack it. Whether such states are labelled as 'mental' seems uninteresting. Whether unconscious states can be intentional is crucial, and modern scientific understanding of the brain strongly suggest they can.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
16. Persons / C. Self-Awareness / 3. Limits of Introspection
Freud and others have shown that we don't know our own beliefs, feelings, motive and attitudes [Freud, by Shoemaker]
     Full Idea: Freud persuaded many that beliefs, wishes and feelings are sometimes unconscious, and even sceptics about Freud acknowledge that there is self-deception about motive and attitudes.
     From: report of Sigmund Freud (works [1900]) by Sydney Shoemaker - Introspection p.396
     A reaction: This seems to me obviously correct. The traditional notion is that the consciousness is the mind, but now it seems obvious that consciousness is only one part of the mind, and maybe even a peripheral (epiphenomenal) part of it.
18. Thought / A. Modes of Thought / 3. Emotions / a. Nature of emotions
Freud said passions are pressures of some flowing hydraulic quantity [Freud, by Solomon]
     Full Idea: Freud argued that the passions in general …were the pressures of a yet unknown 'quantity' (which he simply designated 'Q'). He first thought this flowed through neurones, …and always couched the idea in the language of hydraulics.
     From: report of Sigmund Freud (works [1900]) by Robert C. Solomon - The Passions 3.4
     A reaction: This is the main target of Solomon's criticism, because its imagery has become so widespread. It leads to talk of suppressing emotions, or sublimating them. However, it is not too different from Nietzsche's 'drives' or 'will to power'.
19. Language / C. Assigning Meanings / 9. Indexical Semantics
Science reduces indexicals to a minimum, but they can never be eliminated from empirical matters [Russell]
     Full Idea: It is of the essence of a scientific account of the world to reduce to a minimum the egocentric element in assertion, but success in this attempt is a matter of degree, and is never complete where empirical matter is concerned.
     From: Bertrand Russell (Mr Strawson on Referring [1957], p.121)
     A reaction: He cites ostensive definitions. The key issue is whether they can be wholly eliminated when we try to be objective. Russell here endorses Perry's claim that they never go away. Personally I just think that (if so) we should try harder.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Freud is pessimistic about human nature; it is ambivalent motive and fantasy, rather than reason [Freud, by Murdoch]
     Full Idea: Freud takes a thoroughly pessimistic view of human nature. ...Introspection reveals only the deep tissue of ambivalent motive, and fantasy is a stronger force than reason. Objectivity and unselfishness are not natural to human beings.
     From: report of Sigmund Freud (works [1900], II) by Iris Murdoch - The Sovereignty of Good II
     A reaction: Interesting. His view seems to have coloured the whole of modern culture, reinforced by the hideous irrationality of the Nazis. Adorno and Horkheimer attacking the Enlightenment was the last step in that process.