Combining Texts

All the ideas for 'works', 'Modal Logics and Philosophy' and 'Thinking About Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


34 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Propositional logic handles negation, disjunction, conjunction; predicate logic adds quantifiers, predicates, relations [Girle]
     Full Idea: Propositional logic can deal with negation, disjunction and conjunction of propositions, but predicate logic goes beyond it to deal with quantifiers, predicates and relations.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This is on the first page of an introduction to the next stage, which is to include modal notions like 'must' and 'possibly'.
There are three axiom schemas for propositional logic [Girle]
     Full Idea: The axioms of propositional logic are: A→(B→A); A→(B→C)→(A→B)→(A→C) ; and (¬A→¬B)→(B→A).
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
Proposition logic has definitions for its three operators: or, and, and identical [Girle]
     Full Idea: The operators of propositional logic are defined as follows: 'or' (v) is not-A implies B; 'and' (ampersand) is not A-implies-not-B; and 'identity' (three line equals) is A-implies-B and B-implies-A.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiom systems of logic contain axioms, inference rules, and definitions of proof and theorems [Girle]
     Full Idea: An axiom system for a logic contains three elements: a set of axioms; a set of inference rules; and definitions for proofs and theorems. There are also definitions for the derivation of conclusions from sets of premises.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
There are seven modalities in S4, each with its negation [Girle]
     Full Idea: In S4 there are fourteen modalities: no-operator; necessarily; possibly; necessarily-possibly; possibly-necessarily; necessarily-possibly-necessarily; and possibly-necessarily-possibly (each with its negation).
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.5)
     A reaction: This is said to be 'more complex' than S5, but also 'weaker'.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
◊p → □◊p is the hallmark of S5 [Girle]
     Full Idea: The critical formula that distinguishes S5 from all others is: ◊p → □◊p.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.3)
     A reaction: If it is possible that it is raining, then it is necessary that it is possible that it is raining. But if it is possible in this world, how can that possibility be necessary in all possible worlds?
S5 has just six modalities, and all strings can be reduced to those [Girle]
     Full Idea: In S5 there are six modalities: no-operator; necessarily; and possibly (and their negations). In any sequence of operators we may delete all but the last to gain an equivalent formula.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.5)
     A reaction: Such drastic simplification seems attractive. Is there really no difference, though, between 'necessarily-possibly', 'possibly-possibly' and just 'possibly'? Could p be contingently possible in this world, and necessarily possible in another?
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Possible worlds logics use true-in-a-world rather than true [Girle]
     Full Idea: In possible worlds logics a statement is true-in-a-world rather than just true.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This sounds relativist, but I don't think it is. It is the facts which change, not the concept of truth. So 'donkeys can talk' may be true in a world, but not in the actual one.
Modal logic has four basic modal negation equivalences [Girle]
     Full Idea: The four important logical equivalences in modal logic (the Modal Negation equivalences) are: ¬◊p↔□¬p, ◊¬p↔¬□p, □p↔¬◊¬p, and ◊p↔¬□¬p.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: [Possibly is written as a diamond, necessarily a square] These are parallel to a set of equivalences between quantifiers in predicate logic. They are called the four 'modal negation (MN) equivalences'.
Modal logics were studied in terms of axioms, but now possible worlds semantics is added [Girle]
     Full Idea: Modal logics were, for a long time, studied in terms of axiom systems. The advent of possible worlds semantics made it possible to study them in a semantic way as well.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Necessary implication is called 'strict implication'; if successful, it is called 'entailment' [Girle]
     Full Idea: Necessary implication is often called 'strict implication'. The sort of strict implication found in valid arguments, where the conjunction of the premises necessarily implies the conclusion, is often called 'entailment'.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: These are basic concept for all logic.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
If an argument is invalid, a truth tree will indicate a counter-example [Girle]
     Full Idea: The truth trees method for establishing the validity of arguments and formulas is easy to use, and has the advantage that if an argument or formula is not valid, then a counter-example can be retrieved from the tree.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
10. Modality / A. Necessity / 3. Types of Necessity
Analytic truths are divided into logically and conceptually necessary [Girle]
     Full Idea: It has been customary to see analytic truths as dividing into the logically necessary and the conceptually necessary.
     From: Rod Girle (Modal Logics and Philosophy [2000], 7.3)
     A reaction: I suspect that this neglected distinction is important in discussions of Quine's elimination of the analytic/synthetic distinction. Was Quine too influenced by what is logically necessary, which might shift with a change of axioms?
10. Modality / B. Possibility / 1. Possibility
Possibilities can be logical, theoretical, physical, economic or human [Girle]
     Full Idea: Qualified modalities seem to form a hierarchy, if we say that 'the possibility that there might be no hunger' is possible logically, theoretically, physically, economically, and humanly.
     From: Rod Girle (Modal Logics and Philosophy [2000], 7.3)
     A reaction: Girle also mentions conceptual possibility. I take 'physically' to be the same as 'naturally'. I would take 'metaphysically' possible to equate to 'theoretically' rather than 'logically'. Almost anything might be logically possible, with bizarre logic.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A world has 'access' to a world it generates, which is important in possible worlds semantics [Girle]
     Full Idea: When one world generates another then it has 'access' to the world it generated. The accessibility relation between worlds is very important in possible worlds semantics.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.2)
     A reaction: This invites the obvious question what is meant by 'generates'.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
15. Nature of Minds / B. Features of Minds / 2. Unconscious Mind
Freud treats the unconscious as intentional and hence mental [Freud, by Searle]
     Full Idea: Freud thinks that our unconscious mental states exist as occurrent intrinsic intentional states even when unconscious. Their ontology is that of the mental, even when they are unconscious.
     From: report of Sigmund Freud (works [1900]) by John Searle - The Rediscovery of the Mind Ch. 7.V
     A reaction: Searle states this view in order to attack it. Whether such states are labelled as 'mental' seems uninteresting. Whether unconscious states can be intentional is crucial, and modern scientific understanding of the brain strongly suggest they can.
16. Persons / C. Self-Awareness / 3. Limits of Introspection
Freud and others have shown that we don't know our own beliefs, feelings, motive and attitudes [Freud, by Shoemaker]
     Full Idea: Freud persuaded many that beliefs, wishes and feelings are sometimes unconscious, and even sceptics about Freud acknowledge that there is self-deception about motive and attitudes.
     From: report of Sigmund Freud (works [1900]) by Sydney Shoemaker - Introspection p.396
     A reaction: This seems to me obviously correct. The traditional notion is that the consciousness is the mind, but now it seems obvious that consciousness is only one part of the mind, and maybe even a peripheral (epiphenomenal) part of it.
18. Thought / A. Modes of Thought / 3. Emotions / a. Nature of emotions
Freud said passions are pressures of some flowing hydraulic quantity [Freud, by Solomon]
     Full Idea: Freud argued that the passions in general …were the pressures of a yet unknown 'quantity' (which he simply designated 'Q'). He first thought this flowed through neurones, …and always couched the idea in the language of hydraulics.
     From: report of Sigmund Freud (works [1900]) by Robert C. Solomon - The Passions 3.4
     A reaction: This is the main target of Solomon's criticism, because its imagery has become so widespread. It leads to talk of suppressing emotions, or sublimating them. However, it is not too different from Nietzsche's 'drives' or 'will to power'.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Freud is pessimistic about human nature; it is ambivalent motive and fantasy, rather than reason [Freud, by Murdoch]
     Full Idea: Freud takes a thoroughly pessimistic view of human nature. ...Introspection reveals only the deep tissue of ambivalent motive, and fantasy is a stronger force than reason. Objectivity and unselfishness are not natural to human beings.
     From: report of Sigmund Freud (works [1900], II) by Iris Murdoch - The Sovereignty of Good II
     A reaction: Interesting. His view seems to have coloured the whole of modern culture, reinforced by the hideous irrationality of the Nazis. Adorno and Horkheimer attacking the Enlightenment was the last step in that process.