Combining Texts

All the ideas for 'Intro to Naming,Necessity and Natural Kinds', 'Mathematical logic and theory of types' and 'Set Theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

2. Reason / D. Definition / 1. Definitions
The new view is that "water" is a name, and has no definition [Schwartz,SP]
     Full Idea: Perhaps the modern view is best expressed as saying that "water" has no definition at all, at least in the traditional sense, and is a proper name of a specific substance.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: This assumes that proper names have no definitions, though I am not clear how we can grasp the name 'Aristotle' without some association of properties (human, for example) to go with it. We need a definition of 'definition'.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes can be reduced to propositional functions [Russell, by Hanna]
     Full Idea: Russell held that classes can be reduced to propositional functions.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Robert Hanna - Rationality and Logic 2.4
     A reaction: The exact nature of a propositional function is disputed amongst Russell scholars (though it is roughly an open sentence of the form 'x is red').
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
We refer to Thales successfully by name, even if all descriptions of him are false [Schwartz,SP]
     Full Idea: We can refer to Thales by using the name "Thales" even though perhaps the only description we can supply is false of him.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: It is not clear what we would be referring to if all of our descriptions (even 'Greek philosopher') were false. If an archaeologist finds just a scrap of stone with a name written on it, that is hardly a sufficient basis for successful reference.
The traditional theory of names says some of the descriptions must be correct [Schwartz,SP]
     Full Idea: The traditional theory of proper names entails that at least some combination of the things ordinarily believed of Aristotle are necessarily true of him.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: Searle endorses this traditional theory. Kripke and co. tried to dismiss it, but you can't. If all descriptions of Aristotle turned out to be false (it was actually the name of a Persian statue), our modern references would have been unsuccessful.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
The class of classes which lack self-membership leads to a contradiction [Russell, by Grayling]
     Full Idea: The class of teaspoons isn't a teaspoon, so isn't a member of itself; but the class of non-teaspoons is a member of itself. The class of all classes which are not members of themselves is a member of itself if it isn't a member of itself! Paradox.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by A.C. Grayling - Russell Ch.2
     A reaction: A very compressed version of Russell's famous paradox, often known as the 'barber' paradox. Russell developed his Theory of Types in an attempt to counter the paradox. Frege's response was to despair of his own theory.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Type theory seems an extreme reaction, since self-exemplification is often innocuous [Swoyer on Russell]
     Full Idea: Russell's reaction to his paradox (by creating his theory of types) seems extreme, because many cases of self-exemplification are innocuous. The property of being a property is itself a property.
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Chris Swoyer - Properties 7.5
     A reaction: Perhaps it is not enough that 'many cases' are innocuous. We are starting from philosophy of mathematics, where precision is essentially. General views about properties come later.
Russell's improvements blocked mathematics as well as paradoxes, and needed further axioms [Russell, by Musgrave]
     Full Idea: Unfortunately, Russell's new logic, as well as preventing the deduction of paradoxes, also prevented the deduction of mathematics, so he supplemented it with additional axioms, of Infinity, of Choice, and of Reducibility.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Alan Musgrave - Logicism Revisited §2
     A reaction: The first axiom seems to be an empirical hypothesis, and the second has turned out to be independent of logic and set theory.
Type theory means that features shared by different levels cannot be expressed [Morris,M on Russell]
     Full Idea: Russell's theory of types avoided the paradoxes, but it had the result that features common to different levels of the hierarchy become uncapturable (since any attempt to capture them would involve a predicate which disobeyed the hierarchy restrictions).
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Michael Morris - Guidebook to Wittgenstein's Tractatus 2H
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Ramified types can be defended as a system of intensional logic, with a 'no class' view of sets [Russell, by Linsky,B]
     Full Idea: A defence of the ramified theory of types comes in seeing it as a system of intensional logic which includes the 'no class' account of sets, and indeed the whole development of mathematics, as just a part.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Bernard Linsky - Russell's Metaphysical Logic 6.1
     A reaction: So Linsky's basic project is to save logicism, by resting on intensional logic (rather than extensional logic and set theory). I'm not aware that Linsky has acquired followers for this. Maybe Crispin Wright has commented?
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
A set does not exist unless at least one of its specifications is predicative [Russell, by Bostock]
     Full Idea: The idea is that the same set may well have different canonical specifications, i.e. there may be different ways of stating its membership conditions, and so long as one of these is predicative all is well. If none are, the supposed set does not exist.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
Russell is a conceptualist here, saying some abstracta only exist because definitions create them [Russell, by Bostock]
     Full Idea: It is a conceptualist approach that Russell is relying on. ...The view is that some abstract objects ...exist only because they are definable. It is the definition that would (if permitted) somehow bring them into existence.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: I'm suddenly thinking that predicativism is rather interesting. Being of an anti-platonist persuasion about abstract 'objects', I take some story about how we generate them to be needed. Psychological abstraction seems right, but a bit vague.
Vicious Circle says if it is expressed using the whole collection, it can't be in the collection [Russell, by Bostock]
     Full Idea: The Vicious Circle Principle says, roughly, that whatever involves, or presupposes, or is only definable in terms of, all of a collection cannot itself be one of the collection.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908], p.63,75) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: This is Bostock's paraphrase of Russell, because Russell never quite puts it clearly. The response is the requirement to be 'predicative'. Bostock emphasises that it mainly concerns definitions. The Principle 'always leads to hierarchies'.
18. Thought / C. Content / 8. Intension
The intension of "lemon" is the conjunction of properties associated with it [Schwartz,SP]
     Full Idea: The conjunction of properties associated with a term such as "lemon" is often called the intension of the term "lemon".
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §II)
     A reaction: The extension of "lemon" is the set of all lemons. At last, a clear explanation of the word 'intension'! The debate becomes clear - over whether the terms of a language are used in reference to ideas of properties (and substances?), or to external items.