Combining Texts

All the ideas for 'Intro to Naming,Necessity and Natural Kinds', 'Intro to Non-Classical Logic (1st ed)' and 'Number Determiners, Numbers, Arithmetic'

unexpand these ideas     |    start again     |     specify just one area for these texts


41 ideas

2. Reason / D. Definition / 1. Definitions
The new view is that "water" is a name, and has no definition [Schwartz,SP]
     Full Idea: Perhaps the modern view is best expressed as saying that "water" has no definition at all, at least in the traditional sense, and is a proper name of a specific substance.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: This assumes that proper names have no definitions, though I am not clear how we can grasp the name 'Aristotle' without some association of properties (human, for example) to go with it. We need a definition of 'definition'.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
We refer to Thales successfully by name, even if all descriptions of him are false [Schwartz,SP]
     Full Idea: We can refer to Thales by using the name "Thales" even though perhaps the only description we can supply is false of him.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: It is not clear what we would be referring to if all of our descriptions (even 'Greek philosopher') were false. If an archaeologist finds just a scrap of stone with a name written on it, that is hardly a sufficient basis for successful reference.
The traditional theory of names says some of the descriptions must be correct [Schwartz,SP]
     Full Idea: The traditional theory of proper names entails that at least some combination of the things ordinarily believed of Aristotle are necessarily true of him.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: Searle endorses this traditional theory. Kripke and co. tried to dismiss it, but you can't. If all descriptions of Aristotle turned out to be false (it was actually the name of a Persian statue), our modern references would have been unsuccessful.
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An adjective contributes semantically to a noun phrase [Hofweber]
     Full Idea: The semantic value of a determiner (an adjective) is a function from semantic values to nouns to semantic values of full noun phrases.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §3.1)
     A reaction: This kind of states the obvious (assuming one has a compositional view of sentences), but his point is that you can't just eliminate adjectival uses of numbers by analysing them away, as if they didn't do anything.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Quantifiers for domains and for inference come apart if there are no entities [Hofweber]
     Full Idea: Quantifiers have two functions in communication - to range over a domain of entities, and to have an inferential role (e.g. F(t)→'something is F'). In ordinary language these two come apart for singular terms not standing for any entities.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: This simple observations seems to me to be wonderfully illuminating of a whole raft of problems, the sort which logicians get steamed up about, and ordinary speakers don't. Context is the key to 90% of philosophical difficulties (?). See Idea 10008.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
What is the relation of number words as singular-terms, adjectives/determiners, and symbols? [Hofweber]
     Full Idea: There are three different uses of the number words: the singular-term use (as in 'the number of moons of Jupiter is four'), the adjectival (or determiner) use (as in 'Jupiter has four moons'), and the symbolic use (as in '4'). How are they related?
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §1)
     A reaction: A classic philosophy of language approach to the problem - try to give the truth-conditions for all three types. The main problem is that the first one implies that numbers are objects, whereas the others do not. Why did Frege give priority to the first?
'2 + 2 = 4' can be read as either singular or plural [Hofweber]
     Full Idea: There are two ways to read to read '2 + 2 = 4', as singular ('two and two is four'), and as plural ('two and two are four').
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.1)
     A reaction: Hofweber doesn't notice that this phenomenon occurs elsewhere in English. 'The team is playing well', or 'the team are splitting up'; it simply depends whether you are holding the group in though as an entity, or as individuals. Important for numbers.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Why is arithmetic hard to learn, but then becomes easy? [Hofweber]
     Full Idea: Why is arithmetic so hard to learn, and why does it seem so easy to us now? For example, subtracting 789 from 26,789.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.2)
     A reaction: His answer that we find thinking about objects very easy, but as children we have to learn with difficulty the conversion of the determiner/adjectival number words, so that we come to think of them as objects.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Arithmetic is not about a domain of entities, as the quantifiers are purely inferential [Hofweber]
     Full Idea: I argue for an internalist conception of arithmetic. Arithmetic is not about a domain of entities, not even quantified entities. Quantifiers over natural numbers occur in their inferential-role reading in which they merely generalize over the instances.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: Hofweber offers the hope that modern semantics can disentangle the confusions in platonist arithmetic. Very interesting. The fear is that after digging into the semantics for twenty years, you find the same old problems re-emerging at a lower level.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Arithmetic doesn’t simply depend on objects, since it is true of fictional objects [Hofweber]
     Full Idea: That 'two dogs are more than one' is clearly true, but its truth doesn't depend on the existence of dogs, as is seen if we consider 'two unicorns are more than one', which is true even though there are no unicorns.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.2)
     A reaction: This is an objection to crude empirical accounts of arithmetic, but the idea would be that there is a generalisation drawn from objects (dogs will do nicely), which then apply to any entities. If unicorns are entities, it will be true of them.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
We might eliminate adjectival numbers by analysing them into blocks of quantifiers [Hofweber]
     Full Idea: Determiner uses of number words may disappear on analysis. This is inspired by Russell's elimination of the word 'the'. The number becomes blocks of first-order quantifiers at the level of semantic representation.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §2)
     A reaction: [compressed] The proposal comes from platonists, who argue that numbers cannot be analysed away if they are objects. Hofweber says the analogy with Russell is wrong, as 'the' can't occur in different syntactic positions, the way number words can.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
First-order logic captures the inferential relations of numbers, but not the semantics [Hofweber]
     Full Idea: Representing arithmetic formally we do not primarily care about semantic features of number words. We are interested in capturing the inferential relations of arithmetical statements to one another, which can be done elegantly in first-order logic.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: This begins to pinpoint the difference between the approach of logicists like Frege, and those who are interested in the psychology of numbers, and the empirical roots of numbers in the process of counting.
15. Nature of Minds / C. Capacities of Minds / 4. Objectification
Our minds are at their best when reasoning about objects [Hofweber]
     Full Idea: Our minds mainly reason about objects. Most cognitive problems we are faced with deal with particular objects, whether they are people or material things. Reasoning about them is what our minds are good at.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.3)
     A reaction: Hofweber is suggesting this as an explanation of why we continually reify various concepts, especially numbers. Very plausible. It works for qualities of character, and explains our tendency to talk about universals as objects ('redness').
18. Thought / C. Content / 8. Intension
The intension of "lemon" is the conjunction of properties associated with it [Schwartz,SP]
     Full Idea: The conjunction of properties associated with a term such as "lemon" is often called the intension of the term "lemon".
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §II)
     A reaction: The extension of "lemon" is the set of all lemons. At last, a clear explanation of the word 'intension'! The debate becomes clear - over whether the terms of a language are used in reference to ideas of properties (and substances?), or to external items.