Combining Texts

All the ideas for 'Abstract Objects: a Case Study', 'What is so bad about Contradictions?' and 'fragments/reports'

unexpand these ideas     |    start again     |     specify just one area for these texts


6 ideas

2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
     Full Idea: Priest says there is room for contradictions. He gives the example of someone in a doorway; is he in or out of the room. Given that in and out are mutually exclusive and exhaustive, and neither is the default, he seems to be both in and not in.
     From: report of Graham Priest (What is so bad about Contradictions? [1998]) by Roy Sorensen - Vagueness and Contradiction 4.3
     A reaction: Priest is a clever lad, but I don't think I can go with this. It just seems to be an equivocation on the word 'in' when applied to rooms. First tell me the criteria for being 'in' a room. What is the proposition expressed in 'he is in the room'?
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
     Full Idea: Archimedes gave a sort of definition of 'straight line' when he said it is the shortest line between two points.
     From: report of Archimedes (fragments/reports [c.240 BCE]) by Gottfried Leibniz - New Essays on Human Understanding 4.13
     A reaction: Commentators observe that this reduces the purity of the original Euclidean axioms, because it involves distance and measurement, which are absent from the purest geometry.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Mathematics is both necessary and a priori because it really consists of logical truths [Yablo]
     Full Idea: Mathematics seems necessary because the real contents of mathematical statements are logical truths, which are necessary, and it seems a priori because logical truths really are a priori.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 10)
     A reaction: Yablo says his logicism has a Kantian strain, because numbers and sets 'inscribed on our spectacles', but he takes a different view (in the present Idea) from Kant about where the necessity resides. Personally I am tempted by an a posteriori necessity.
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Putting numbers in quantifiable position (rather than many quantifiers) makes expression easier [Yablo]
     Full Idea: Saying 'the number of Fs is 5', instead of using five quantifiers, puts the numeral in quantifiable position, which brings expressive advantages. 'There are more sheep in the field than cows' is an infinite disjunction, expressible in finite compass.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 08)
     A reaction: See Hofweber with similar thoughts. This idea I take to be a key one in explaining many metaphysical confusions. The human mind just has a strong tendency to objectify properties, relations, qualities, categories etc. - for expression and for reasoning.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Concrete objects have few essential properties, but properties of abstractions are mostly essential [Yablo]
     Full Idea: Objects like me have a few essential properties, and numerous accidental ones. Abstract objects are a different story. The intrinsic properties of the empty set are mostly essential. The relations of numbers are also mostly essential.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 01)
We are thought to know concreta a posteriori, and many abstracta a priori [Yablo]
     Full Idea: Our knowledge of concreta is a posteriori, but our knowledge of numbers, at least, has often been considered a priori.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 02)