Combining Texts

All the ideas for 'Abstract Objects: a Case Study', 'The Philosophy of Logic' and 'Axiomatic Thought'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The facts of geometry, arithmetic or statics order themselves into theories [Hilbert]
     Full Idea: The facts of geometry order themselves into a geometry, the facts of arithmetic into a theory of numbers, the facts of statics, electrodynamics into a theory of statics, electrodynamics, or the facts of the physics of gases into a theory of gases.
     From: David Hilbert (Axiomatic Thought [1918], [03])
     A reaction: This is the confident (I would say 'essentialist') view of axioms, which received a bit of a setback with Gödel's Theorems. I certainly agree that the world proposes an order to us - we don't just randomly invent one that suits us.
Axioms must reveal their dependence (or not), and must be consistent [Hilbert]
     Full Idea: If a theory is to serve its purpose of orienting and ordering, it must first give us an overview of the independence and dependence of its propositions, and second give a guarantee of the consistency of all of the propositions.
     From: David Hilbert (Axiomatic Thought [1918], [09])
     A reaction: Gödel's Second theorem showed that the theory can never prove its own consistency, which made the second Hilbert requirement more difficult. It is generally assumed that each of the axioms must be independent of the others.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Very large sets should be studied in an 'if-then' spirit [Putnam]
     Full Idea: Sets of a very high type or very high cardinality (higher than the continuum, for example), should today be investigated in an 'if-then' spirit.
     From: Hilary Putnam (The Philosophy of Logic [1971], p.347), quoted by Penelope Maddy - Naturalism in Mathematics
     A reaction: Quine says the large sets should be regarded as 'uninterpreted'.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
To decide some questions, we must study the essence of mathematical proof itself [Hilbert]
     Full Idea: It is necessary to study the essence of mathematical proof itself if one wishes to answer such questions as the one about decidability in a finite number of operations.
     From: David Hilbert (Axiomatic Thought [1918], [53])
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
     Full Idea: The linearity of the equation of the plane and of the orthogonal transformation of point-coordinates is completely adequate to produce the whole broad science of spatial Euclidean geometry purely by means of analysis.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This remark comes from the man who succeeded in producing modern axioms for geometry (in 1897), so he knows what he is talking about. We should not be wholly pessimistic about Hilbert's ambitious projects. He had to dig deeper than this idea...
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Number theory just needs calculation laws and rules for integers [Hilbert]
     Full Idea: The laws of calculation and the rules of integers suffice for the construction of number theory.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This is the confident Hilbert view that the whole system can be fully spelled out. Gödel made this optimism more difficult.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Indispensability strongly supports predicative sets, and somewhat supports impredicative sets [Putnam]
     Full Idea: We may say that indispensability is a pretty strong argument for the existence of at least predicative sets, and a pretty strong, but not as strong, argument for the existence of impredicative sets.
     From: Hilary Putnam (The Philosophy of Logic [1971], p.346), quoted by Penelope Maddy - Naturalism in Mathematics II.2
We must quantify over numbers for science; but that commits us to their existence [Putnam]
     Full Idea: Quantification over mathematical entities is indispensable for science..., therefore we should accept such quantification; but this commits us to accepting the existence of the mathematical entities in question.
     From: Hilary Putnam (The Philosophy of Logic [1971], p.57), quoted by Stephen Yablo - Apriority and Existence
     A reaction: I'm not surprised that Hartry Field launched his Fictionalist view of mathematics in response to such a counterintuitive claim. I take it we use numbers to slice up reality the way we use latitude to slice up the globe. No commitment to lines!
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Mathematics is both necessary and a priori because it really consists of logical truths [Yablo]
     Full Idea: Mathematics seems necessary because the real contents of mathematical statements are logical truths, which are necessary, and it seems a priori because logical truths really are a priori.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 10)
     A reaction: Yablo says his logicism has a Kantian strain, because numbers and sets 'inscribed on our spectacles', but he takes a different view (in the present Idea) from Kant about where the necessity resides. Personally I am tempted by an a posteriori necessity.
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Putting numbers in quantifiable position (rather than many quantifiers) makes expression easier [Yablo]
     Full Idea: Saying 'the number of Fs is 5', instead of using five quantifiers, puts the numeral in quantifiable position, which brings expressive advantages. 'There are more sheep in the field than cows' is an infinite disjunction, expressible in finite compass.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 08)
     A reaction: See Hofweber with similar thoughts. This idea I take to be a key one in explaining many metaphysical confusions. The human mind just has a strong tendency to objectify properties, relations, qualities, categories etc. - for expression and for reasoning.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Concrete objects have few essential properties, but properties of abstractions are mostly essential [Yablo]
     Full Idea: Objects like me have a few essential properties, and numerous accidental ones. Abstract objects are a different story. The intrinsic properties of the empty set are mostly essential. The relations of numbers are also mostly essential.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 01)
We are thought to know concreta a posteriori, and many abstracta a priori [Yablo]
     Full Idea: Our knowledge of concreta is a posteriori, but our knowledge of numbers, at least, has often been considered a priori.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 02)
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
By digging deeper into the axioms we approach the essence of sciences, and unity of knowedge [Hilbert]
     Full Idea: By pushing ahead to ever deeper layers of axioms ...we also win ever-deeper insights into the essence of scientific thought itself, and become ever more conscious of the unity of our knowledge.
     From: David Hilbert (Axiomatic Thought [1918], [56])
     A reaction: This is the less fashionable idea that scientific essentialism can also be applicable in the mathematic sciences, centring on the project of axiomatisation for logic, arithmetic, sets etc.