Combining Texts

All the ideas for 'Thinking About Mathematics', 'The Theory of Objects' and 'Platonistic Theories of Universals'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

2. Reason / B. Laws of Thought / 6. Ockham's Razor
Entities can be multiplied either by excessive categories, or excessive entities within a category [Hoffman/Rosenkrantz]
     Full Idea: There are two ways that entities can be multiplied unnecessarily: by multiplying the number of explanatory categories, and by multiplying the number of entities within a category.
     From: J Hoffman/G Rosenkrantz (Platonistic Theories of Universals [2003], 4)
     A reaction: An important distinction. The orthodox view is that it is the excess of categories that is to be avoided (e.g. by nominalists). Possible worlds in metaphysics, and multiple worlds in physics, claim not to violate the first case.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
So-called 'free logic' operates without existence assumptions [Meinong, by George/Van Evra]
     Full Idea: Meinong has recently been credited with inspiring 'free logic': a logic without existence assumptions.
     From: report of Alexius Meinong (The Theory of Objects [1904]) by George / Van Evra - The Rise of Modern Logic 8
     A reaction: This would appear to be a bold escape from the quandries concerning the existential implications of quantifiers. I immediately find it very appealing. It seems to spell disaster for the Quinean program of deducing ontology from language.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
8. Modes of Existence / D. Universals / 4. Uninstantiated Universals
'There are shapes which are never exemplified' is the toughest example for nominalists [Hoffman/Rosenkrantz]
     Full Idea: The example which presents the most serious challenge to nominalism is 'there are shapes which are never exemplified'.
     From: J Hoffman/G Rosenkrantz (Platonistic Theories of Universals [2003], 3)
     A reaction: To 'exemplify' a shape must it be a physical object, or a drawing of such an object, or a description? If none of those have ever existed, I'm not sure what 'are' is supposed to mean. They seem to be possibilia (with all the associated problems).
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Nominalists are motivated by Ockham's Razor and a distrust of unobservables [Hoffman/Rosenkrantz]
     Full Idea: The two main motivations for nominalism are an admirable commitment to Ockham's Razor, and a queasiness about postulating entities that are unobservable or non-empirical, existing in a non-physical realm.
     From: J Hoffman/G Rosenkrantz (Platonistic Theories of Universals [2003], 3)
     A reaction: It doesn't follow that because the entities are unobservable that they are non-physical. Consider the 'interior' of an electron. Neverless I share a love of Ockham's Razor and a deep caution about unobservables.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
There can be impossible and contradictory objects, if they can have properties [Meinong, by Friend]
     Full Idea: Meinong (and Priest) leave room for impossible objects (like a mountain made entirely of gold), and even contradictory objects (such as a round square). This would have a property, of 'being a contradictory object'.
     From: report of Alexius Meinong (The Theory of Objects [1904]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.8
     A reaction: This view is only possible with a rather lax view of properties. Personally I don't take 'being a pencil' to be a property of a pencil. It might be safer to just say that 'round squares' are possible linguistic subjects of predication.
9. Objects / A. Existence of Objects / 3. Objects in Thought
There are objects of which it is true that there are no such objects [Meinong]
     Full Idea: There are objects of which it is true that there are no such objects.
     From: Alexius Meinong (The Theory of Objects [1904]), quoted by Peter van Inwagen - Existence,Ontological Commitment and Fictions p.131
     A reaction: Van Inwagen say this idea is 'infamous', but Meinong is undergoing a revival, and commitment to non-existent objects may be the best explanation of some ways of talking.
Meinong says an object need not exist, but must only have properties [Meinong, by Friend]
     Full Idea: Meinong distinguished between 'existing objects' and 'subsisting objects', and being an object does not imply existence, but only 'having properties'.
     From: report of Alexius Meinong (The Theory of Objects [1904]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.8
     A reaction: Meinong is treated as a joke (thanks to Russell), but this is good. "Father Christmas does not exist, but he has a red coat". He'd better have some sort of existy aspect if he is going to have a property. So he's 'an object'. 'Insubstantial'?
9. Objects / A. Existence of Objects / 4. Impossible objects
Meinong said all objects of thought (even self-contradictions) have some sort of being [Meinong, by Lycan]
     Full Idea: Meinong insisted (à la Anselm) that any possible object of thought - even a self-contradictory one - has being of a sort even though only a few such things are so lucky as to exist in reality as well.
     From: report of Alexius Meinong (The Theory of Objects [1904]) by William Lycan - Philosophy of Language Ch.1
     A reaction: ['This idea gave Russell fits' says Lycan]. In the English-speaking world this is virtually the only idea for which Meinong is remembered. Russell (Idea 5409) was happy for some things to merely 'subsist' as well as others which could 'exist'.
The objects of knowledge are far more numerous than objects which exist [Meinong]
     Full Idea: The totality of what exists, including what has existed and what will exist, is infinitely small in comparison with the totality of Objects of knowledge.
     From: Alexius Meinong (The Theory of Objects [1904]), quoted by William Lycan - The Trouble with Possible Worlds 01
     A reaction: This is rather profound, but the word 'object' doesn't help. I would say 'What we know concerns far more than what merely exists'.
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
Four theories of possible worlds: conceptualist, combinatorial, abstract, or concrete [Hoffman/Rosenkrantz]
     Full Idea: There are four models of the ontological status of possible worlds: conceptualist (mental constructions), combinatorial (all combinations of the actual world), abstract worlds (conjunction of propositions), and concrete worlds (collections of concreta).
     From: J Hoffman/G Rosenkrantz (Platonistic Theories of Universals [2003], 4)
     A reaction: [the proponents cited are, in order, Rescher, Cresswell, Plantinga and Lewis] They dismiss Rescher and Cresswell, both of whom seem to me more plausible than Plantinga or Lewis. 'Possible' can't figure in the definition. Possible to us, or in reality?
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.