Combining Texts

All the ideas for 'Thinking About Mathematics', 'The Epic of Gilgamesh' and 'Scientific Attitude and Fallibilism'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Numbers are just names devised for counting [Peirce]
     Full Idea: Numbers are merely a system of names devised by men for the purpose of counting.
     From: Charles Sanders Peirce (Scientific Attitude and Fallibilism [1899], II)
     A reaction: This seems a perfectly plausible view prior to the advent of Cantor, set theory and modern mathematical logic. I suppose the modern reply to this is that Peirce may be right about origin, but that men thereby stumbled on an Aladdin's Cave of riches.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
That two two-eyed people must have four eyes is a statement about numbers, not a fact [Peirce]
     Full Idea: To say that 'if' there are two persons and each person has two eyes there 'will be' four eyes is not a statement of fact, but a statement about the system of numbers which is our own creation.
     From: Charles Sanders Peirce (Scientific Attitude and Fallibilism [1899], II)
     A reaction: One eye for each arm of the people is certainly a fact. Frege uses this equivalence to build numbers. I think Peirce is wrong. If it is not a fact that these people have four eyes, I don't know what 'four' means. It's being two pairs is also a fact.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
Reasoning is based on statistical induction, so it can't achieve certainty or precision [Peirce]
     Full Idea: All positive reasoning is judging the proportion of something in a whole collection by the proportion found in a sample. Hence we can never hope to attain absolute certainty, absolute exactitude, absolute universality.
     From: Charles Sanders Peirce (Scientific Attitude and Fallibilism [1899], II)
     A reaction: This is the basis of Peirce's fallibilism - that all 'positive' reasoning (whatever that it?) is based on statistical induction. I'm all in favour of fallibilism, but find Peirce's claim to be a bit too narrow. He was too mesmerised by physical science.
12. Knowledge Sources / A. A Priori Knowledge / 3. Innate Knowledge / a. Innate knowledge
Innate truths are very uncertain and full of error, so they certainly have exceptions [Peirce]
     Full Idea: It seems to me there is the most historic proof that innate truths are particularly uncertain and mixed up with error, and therefore a fortiori not without exception.
     From: Charles Sanders Peirce (Scientific Attitude and Fallibilism [1899], II)
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
12. Knowledge Sources / E. Direct Knowledge / 3. Inspiration
A truth is hard for us to understand if it rests on nothing but inspiration [Peirce]
     Full Idea: A truth which rests on the authority of inspiration only is of a somewhat incomprehensible nature; and we can never be sure that we rightly comprehend it.
     From: Charles Sanders Peirce (Scientific Attitude and Fallibilism [1899], II)
If we decide an idea is inspired, we still can't be sure we have got the idea right [Peirce]
     Full Idea: Even if we decide that an idea really is inspired, we cannot be sure, or nearly sure, that the statement is true. We know one of the commandments of the Bible was printed without a 'not' in it.
     From: Charles Sanders Peirce (Scientific Attitude and Fallibilism [1899], II)
Only reason can establish whether some deliverance of revelation really is inspired [Peirce]
     Full Idea: We never can be absolutely certain that any given deliverance [of revelation] really is inspired; for that can only be established by reasoning.
     From: Charles Sanders Peirce (Scientific Attitude and Fallibilism [1899], II)
15. Nature of Minds / C. Capacities of Minds / 2. Imagination
Only imagination can connect phenomena together in a rational way [Peirce]
     Full Idea: We can stare stupidly at phenomena; but in the absence of imagination they will not connect themselves together in any rational way.
     From: Charles Sanders Peirce (Scientific Attitude and Fallibilism [1899], I)
     A reaction: The importance of this is its connection between imagination and 'rational' understanding. This is an important corrective to a crude traditional picture of the role of imagination. I would connect imagination with counterfactuals and best explanation.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
The gods alone live forever with Shamash. The days of humans are numbered. [Anon (Gilg)]
     Full Idea: The gods alone are the ones who live forever with Shamash. / As for humans, their days are numbered.
     From: Anon (Gilg) (The Epic of Gilgamesh [c.2300 BCE], 3.2.34), quoted by Michèle Friend - Introducing the Philosophy of Mathematics 1.2
     A reaction: Friend quotes this to show the antiquity of the concept of infinity. It also, of course, shows that Sumerians at that time did not believe in human immortality.