Combining Texts

All the ideas for 'Thinking About Mathematics', 'The Truth in Relativism' and 'Conditionals (Stanf)'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof is only valid if we accept the truth-functional reading of 'if' [Edgington]
     Full Idea: Conditional Proof seems sound: 'From X and Y, it follows that Z. So from X it follows that if Y,Z'. Yet for no reading of 'if' which is stronger that the truth-functional reading is CP valid, at least if we accept ¬(A&¬B);A; therefore B.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 2.2)
     A reaction: See the section of ideas on Conditionals (filed under 'Modality') for a fuller picture of this issue. Edgington offers it as one of the main arguments in favour of the truth-functional reading of 'if' (though she rejects that reading).
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
10. Modality / B. Possibility / 6. Probability
A thing works like formal probability if all the options sum to 100% [Edgington]
     Full Idea: One's degrees of belief in the members of an idealised partition should sum to 100%. That is all there is to the claim that degrees of belief should have the structure of probabilities.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 3.1)
Conclusion improbability can't exceed summed premise improbability in valid arguments [Edgington]
     Full Idea: If (and only if) an argument is valid, then in no probability distribution does the improbability of its conclusion exceed the sum of the improbabilities of its premises. We can call this the Probability Preservation Principle.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 3.2)
     A reaction: [Ernest Adams is credited with this] This means that classical logic is in some way probability-preserving as well as truth-preserving.
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
Simple indicatives about past, present or future do seem to form a single semantic kind [Edgington]
     Full Idea: Straightforward statements about the past, present or future, to which a conditional clause is attached - the traditional class of indicative conditionals - do (in my view) constitute a single semantic kind.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 1)
     A reaction: This contrasts with Idea 14269, where the future indicatives are group instead with the counterfactuals.
Maybe forward-looking indicatives are best classed with the subjunctives [Edgington]
     Full Idea: According to some theorists, the forward-looking 'indicatives' (those with a 'will' in the main clause) belong with the 'subjunctives' (those with a 'would' in the main clause), and not with the other 'indicatives'.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 1)
     A reaction: [She cites Gibbard, Dudman and 1988 Bennett; Jackson defends the indicative/subjunctive division, and recent Bennett defends it too] It is plausible to say that 'If you will do x' is counterfactual, since it hasn't actually happened.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Truth-function problems don't show up in mathematics [Edgington]
     Full Idea: The main defects of the truth-functional account of conditionals don't show up in mathematics.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 2.3)
     A reaction: These problems are the paradoxes associated with the material conditional ⊃. Too often mathematical logic has been the tail that wagged the dog in modern philosophy.
Inferring conditionals from disjunctions or negated conjunctions gives support to truth-functionalism [Edgington]
     Full Idea: If either A or B is true, then you are intuitively justified in believe that If ¬A, B. If you know that ¬(A&B), then you may justifiably infer that if A, ¬B. The truth-functionalist gets both of these cases (disjunction and negated conjunction) correct.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 2.1)
     A reaction: [compressed version] This summarises two of Edgington's three main arguments in favour of the truth-functional account of conditions (along with the existence of Conditional Proof). It is elementary classical logic which supports truth-functionalism.
The truth-functional view makes conditionals with unlikely antecedents likely to be true [Edgington]
     Full Idea: The truth-functional view of conditionals has the unhappy consequence that all conditionals with unlikely antecedents are likely to be true. To think it likely that ¬A is to think it likely that a sufficient condition for the truth of A⊃B obtains.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 2.3)
     A reaction: This is Edgington's main reason for rejecting the truth-functional account of conditionals. She says it removes our power to discriminate between believable and unbelievable conditionals, which is basic to practical reasoning.
Doctor:'If patient still alive, change dressing'; Nurse:'Either dead patient, or change dressing'; kills patient! [Edgington]
     Full Idea: The doctor says "If the patient is still alive in the morning, change the dressing". As a truth-functional command this says "Make it that either the patient is dead in the morning, or change the dressing", so the nurse kills the patient.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 5)
     A reaction: Isn't philosophy wonderful?
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
Non-truth-functionalist say 'If A,B' is false if A is T and B is F, but deny that is always true for TT,FT and FF [Edgington]
     Full Idea: Non-truth-functional accounts agree that 'If A,B' is false when A is true and B is false; and that it is sometimes true for the other three combinations of truth-values; but they deny that the conditional is always true in each of these three cases.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 2.1)
     A reaction: Truth-functional connectives like 'and' and 'or' don't add any truth-conditions to the values of the propositions, but 'If...then' seems to assert a relationship that goes beyond its component propositions, so non-truth-functionalists are right.
I say "If you touch that wire you'll get a shock"; you don't touch it. How can that make the conditional true? [Edgington]
     Full Idea: Non-truth-functionalists agree that when A is false, 'If A,B' may be either true or false. I say "If you touch that wire, you will get an electric shock". You don't touch it. Was my remark true or false? They say it depends on the wire etc.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 2.1)
     A reaction: This example seems to me to be a pretty conclusive refutation of the truth-functional view. How can the conditional be implied simply by my failure to touch the wire (which is what benighted truth-functionalists seem to believe)?
10. Modality / B. Possibility / 8. Conditionals / e. Supposition conditionals
On the supposition view, believe if A,B to the extent that A&B is nearly as likely as A [Edgington]
     Full Idea: Accepting Ramsey's suggestion that 'if' and 'on the supposition that' come to the same thing, we get an equation which says ...you believe if A,B to the extent that you think that A&B is nearly as likely as A.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 3.1)
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Truth-functionalists support some conditionals which we assert, but should not actually believe [Edgington]
     Full Idea: There are compounds of conditionals which we confidently assert and accept which, by the lights of the truth-functionalist, we do not have reason to believe true, such as 'If it broke if it was dropped, it was fragile', when it is NOT dropped.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 2.5)
     A reaction: [The example is from Gibbard 1981] The fact that it wasn't dropped only negates the nested antecedent, not the whole antecedent. I suppose it also wasn't broken, and both negations seem to be required.
Does 'If A,B' say something different in each context, because of the possibiites there? [Edgington]
     Full Idea: A pragmatic constraint might say that as different possibilities are live in different conversational settings, a different proposition may be expressed by 'If A,B' in different conversational settings.
     From: Dorothy Edgington (Conditionals (Stanf) [2006], 4.1)
     A reaction: Edgington says that it is only the truth of the proposition, not its content, which changes with context. I'm not so sure. 'If Hitler finds out, we are in trouble' says different things in 1914 and 1944.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / f. Ethical non-cognitivism
If moral systems can't judge other moral systems, then moral relativism is true [Williams,B, by Foot]
     Full Idea: If some societies with divergent moral systems merely confront each other, having no use for the assertion that their own systems are true and the others false except to mark the system to which they adhere, then relativism is a true theory of morality.
     From: report of Bernard Williams (The Truth in Relativism [1974]) by Philippa Foot - Moral Relativism p.3
     A reaction: 'Having no use for' an assertion is not the same as the assertion being impossible. Some liberal cultures refuse to criticise others because their highest value is tolerance, even when the target culture wholly contradicts the critics' other values.