Combining Texts

All the ideas for 'Thinking About Mathematics', 'An Analysis of Knowledge and Valuation' and 'Recent Work on Consciousness'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
12. Knowledge Sources / E. Direct Knowledge / 4. Memory
We rely on memory for empirical beliefs because they mutually support one another [Lewis,CI]
     Full Idea: When the whole range of empirical beliefs is taken into account, all of them more or less dependent on memorial knowledge, we find that those which are most credible can be assured by their mutual support, or 'congruence'.
     From: C.I. Lewis (An Analysis of Knowledge and Valuation [1946], 334), quoted by Erik J. Olsson - Against Coherence 3.1
     A reaction: Lewis may be over-confident about this, and is duly attacked by Olson, but it seems to me roughly correct. How do you assess whether some unusual element in your memory was a dream or a real experience?
If we doubt memories we cannot assess our doubt, or what is being doubted [Lewis,CI]
     Full Idea: To doubt our sense of past experience as founded in actuality, would be to lose any criterion by which either the doubt itself or what is doubted could be corroborated.
     From: C.I. Lewis (An Analysis of Knowledge and Valuation [1946], 358), quoted by Erik J. Olsson - Against Coherence 3.3.1
     A reaction: Obviously scepticism about memory can come in degrees, but total rejection of short-term and clear memories looks like a non-starter. What could you put in its place? Hyper-rationalism? Even maths needs memory.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / a. Foundationalism
If anything is to be probable, then something must be certain [Lewis,CI]
     Full Idea: If anything is to be probable, then something must be certain.
     From: C.I. Lewis (An Analysis of Knowledge and Valuation [1946], 186), quoted by Robert Fogelin - Walking the Tightrope of Reason Intro
     A reaction: Lewis makes this comment when facing infinite regress problems. It is a very nice slogan for foundationalism, which embodies the slippery slope view. Personally I feel the emotional pull of foundations, but acknowledge the very strong doubts about them.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / b. Pro-coherentism
Congruents assertions increase the probability of each individual assertion in the set [Lewis,CI]
     Full Idea: A set of statements, or a set of supposed facts asserted, will be said to be congruent if and only if they are so related that the antecedent probability of any one of them will be increased if the remainder of the set can be assumed as given premises.
     From: C.I. Lewis (An Analysis of Knowledge and Valuation [1946], 338), quoted by Erik J. Olsson - Against Coherence 2.2
     A reaction: This thesis is vigorously attacked by Erik Olson, who works through the probability calculations. There seems an obvious problem without that. How else do you assess 'congruence', other than by evidence of mutual strengthening?
15. Nature of Minds / B. Features of Minds / 3. Privacy
A full neural account of qualia will give new epistemic access to them, beyond private experience [Churchlands]
     Full Idea: When the hidden neurophysiological structure of qualia (if there is any) gets revealed by unfolding research, then we will automatically gain a new epistemic access to qualia, beyond each person's native and exclusive capacity for internal discrimination.
     From: Churchland / Churchland (Recent Work on Consciousness [1997])
     A reaction: Carefully phrased and hard to deny, but something is impenetrable. What experience does an insect have when it encounters ultra-violet light? Nothing remotely interesting about their qualia is likely to emerge from the study of insect brains.
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
It is question-begging to assume that qualia are totally simple, hence irreducible [Churchlands]
     Full Idea: One of the crucial premises of the antireductionists - concerning the intrinsic, nonrelational, metaphysical simplicity of our sensory qualia - is a question-begging and unsupported assumption.
     From: Churchland / Churchland (Recent Work on Consciousness [1997])
     A reaction: This is a key point for reductionists, with emphasis on the sheer numbers of connections involved in a simple quale (I estimate a billion involved in one small patch of red).
The qualia Hard Problem is easy, in comparison with the co-ordination of mental states [Churchlands]
     Full Idea: The so-called Hard Problem (of qualia) appears to be one of the easiest, in comparison with the problems of short-term memory, fluid and directable attention, the awake state vs sleep, and the unity of consciousness.
     From: Churchland / Churchland (Recent Work on Consciousness [1997])
     A reaction: Most of their version of the Hard Problems centre on personal identity, and the centralised co-ordination of mental events. I am inclined to agree with them. Worriers about qualia should think more about the complexity of systems of neurons.
18. Thought / C. Content / 8. Intension
Extension is the class of things, intension is the correct definition of the thing, and intension determines extension [Lewis,CI]
     Full Idea: "The denotation or extension of a term is the class of all actual or existent things which the term correctly applies to or names; the connotation or intension of a term is delimited by any correct definition of it." ..And intension determines extension.
     From: C.I. Lewis (An Analysis of Knowledge and Valuation [1946]), quoted by Stephen P. Schwartz - Intro to Naming,Necessity and Natural Kinds §II
     A reaction: The last part is one of the big ideas in philosophy of language, which was rejected by Putnam and co. If you were to reverse the slogan, though, (to extension determines intension) how would you identify the members of the extension?