Combining Texts

All the ideas for 'Thinking About Mathematics', 'A Structural Account of Mathematics' and 'Practical Necessity'

unexpand these ideas     |    start again     |     specify just one area for these texts


33 ideas

4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Realists about sets say there exists a null set in the real world, with no members [Chihara]
     Full Idea: In the Gödelian realistic view of set theory the statement that there is a null set as the assertion of the existence in the real world of a set that has no members.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.6)
     A reaction: It seems to me obvious that such a claim is nonsense on stilts. 'In the beginning there was the null set'?
We only know relational facts about the empty set, but nothing intrinsic [Chihara]
     Full Idea: Everything we know about the empty set is relational; we know that nothing is the membership relation to it. But what do we know about its 'intrinsic properties'?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: Set theory seems to depend on the concept of the empty set. Modern theorists seem over-influenced by the Quine-Putnam view, that if science needs it, we must commit ourselves to its existence.
In simple type theory there is a hierarchy of null sets [Chihara]
     Full Idea: In simple type theory, there is a null set of type 1, a null set of type 2, a null set of type 3..... (Quine has expressed his distaste for this).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.4)
     A reaction: It is bad enough trying to individuate the unique null set, without whole gangs of them drifting indistinguishably through the logical fog. All rational beings should share Quine's distaste, even if Quine is wrong.
The null set is a structural position which has no other position in membership relation [Chihara]
     Full Idea: In the structuralist view of sets, in structures of a certain sort the null set is taken to be a position (or point) that will be such that no other position (or point) will be in the membership relation to it.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.6)
     A reaction: It would be hard to conceive of something having a place in a structure if nothing had a relation to it, so is the null set related to singeton sets but not there members. It will be hard to avoid Platonism here. Set theory needs the null set.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What is special about Bill Clinton's unit set, in comparison with all the others? [Chihara]
     Full Idea: What is it about the intrinsic properties of just that one unit set in virtue of which Bill Clinton is related to just it and not to any other unit sets in the set-theoretical universe?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: If we all kept pet woodlice, we had better not hold a wood louse rally, or we might go home with the wrong one. My singleton seems seems remarkably like yours. Could we, perhaps, swap, just for a change?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The set theorist cannot tell us what 'membership' is [Chihara]
     Full Idea: The set theorist cannot tell us anything about the true relationship of membership.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: If three unrelated objects suddenly became members of a set, it is hard to see how the world would have changed, except in the minds of those thinking about it.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
ZFU refers to the physical world, when it talks of 'urelements' [Chihara]
     Full Idea: ZFU set theory talks about physical objects (the urelements), and hence is in some way about the physical world.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.5)
     A reaction: This sounds a bit surprising, given that the whole theory would appear to be quite unaffected if God announced that idealism is true and there are no physical objects.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
A pack of wolves doesn't cease when one member dies [Chihara]
     Full Idea: A pack of wolves is not thought to go out of existence just because some member of the pack is killed.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.5)
     A reaction: The point is that the formal extensional notion of a set doesn't correspond to our common sense notion of a group or class. Even a highly scientific theory about wolves needs a loose notion of a wolf pack.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
The mathematics of relations is entirely covered by ordered pairs [Chihara]
     Full Idea: Everything one needs to do with relations in mathematics can be done by taking a relation to be a set of ordered pairs. (Ordered triples etc. can be defined as order pairs, so that <x,y,z> is <x,<y,z>>).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.2)
     A reaction: How do we distinguish 'I own my cat' from 'I love my cat'? Or 'I quite like my cat' from 'I adore my cat'? Nevertheless, this is an interesting starting point for a discussion of relations.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Sentences are consistent if they can all be true; for Frege it is that no contradiction can be deduced [Chihara]
     Full Idea: In first-order logic a set of sentences is 'consistent' iff there is an interpretation (or structure) in which the set of sentences is true. ..For Frege, though, a set of sentences is consistent if it is not possible to deduce a contradiction from it.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.1)
     A reaction: The first approach seems positive, the second negative. Frege seems to have a higher standard, which is appealing, but the first one seems intuitively right. There is a possible world where this could work.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Analytic geometry gave space a mathematical structure, which could then have axioms [Chihara]
     Full Idea: With the invention of analytic geometry (by Fermat and then Descartes) physical space could be represented as having a mathematical structure, which could eventually lead to its axiomatization (by Hilbert).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.3)
     A reaction: The idea that space might have axioms seems to be pythagoreanism run riot. I wonder if there is some flaw at the heart of Einstein's General Theory because of this?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
We can replace existence of sets with possibility of constructing token sentences [Chihara, by MacBride]
     Full Idea: Chihara's 'constructability theory' is nominalist - mathematics is reducible to a simple theory of types. Instead of talk of sets {x:x is F}, we talk of open sentences Fx defining them. Existence claims become constructability of sentence tokens.
     From: report of Charles Chihara (A Structural Account of Mathematics [2004]) by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.81
     A reaction: This seems to be approaching the problem in a Fregean way, by giving an account of the semantics. Chihara is trying to evade the Quinean idea that assertion is ontological commitment. But has Chihara retreated too far? How does he assert existence?
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
If a successful theory confirms mathematics, presumably a failed theory disconfirms it? [Chihara]
     Full Idea: If mathematics shares whatever confirmation accrues to the theories using it, would it not be reasonable to suppose that mathematics shares whatever disconfirmation accrues to the theories using it?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 05.8)
     A reaction: Presumably Quine would bite the bullet here, although maths is much closer to the centre of his web of belief, and so far less likely to require adjustment. In practice, though, mathematics is not challenged whenever an experiment fails.
No scientific explanation would collapse if mathematical objects were shown not to exist [Chihara]
     Full Idea: Evidently, no scientific explanations of specific phenomena would collapse as a result of any hypothetical discovery that no mathematical objects exist.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 09.1)
     A reaction: It is inconceivable that anyone would challenge this claim. A good model seems to be drama; a play needs commitment from actors and audience, even when we know it is fiction. The point is that mathematics doesn't collapse either.
10. Modality / A. Necessity / 10. Impossibility
Necessity implies possibility, but in experience it matters which comes first [Williams,B]
     Full Idea: Any notion of necessity must carry with it a corresponding notion of impossibility, …but it can make a difference which one of them presents itself first and more naturally.
     From: Bernard Williams (Practical Necessity [1982], p.127)
     A reaction: I like this because it connects modality with experience, rather than with formal logic. It seems right that in life we immediately see either a necessity or an impossibility, and inferring the other case is an afterthought.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
I prefer the open sentences of a Constructibility Theory, to Platonist ideas of 'equivalence classes' [Chihara]
     Full Idea: What I refer to as an 'equivalence class' (of line segments of a particular length) is an open sentence in my Constructibility Theory. I just use this terminology of the Platonist for didactic purposes.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 09.10)
     A reaction: This is because 'equivalence classes' is committed to the existence of classes, which is Quinean Platonism. I am with Chihara in wanting a story that avoids such things. Kit Fine is investigating similar notions of rules of construction.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Mathematical entities are causally inert, so the causal theory of reference won't work for them [Chihara]
     Full Idea: Causal theories of reference seem doomed to failure for the case of reference to mathematical entities, since such entities are evidently causally inert.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.3)
     A reaction: Presumably you could baptise a fictional entity such as 'Polonius', and initiate a social causal chain, with a tradition of reference. You could baptise a baby in absentia.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
'Gunk' is an individual possessing no parts that are atoms [Chihara]
     Full Idea: An 'atomless gunk' is defined to be an individual possessing no parts that are atoms.
     From: Charles Chihara (A Structural Account of Mathematics [2004], App A)
     A reaction: [Lewis coined it] If you ask what are a-toms made of and what are ideas made of, the only answer we can offer is that the a-toms are made of gunk, and the ideas aren't made of anything, which is still bad news for the existence of ideas.