Combining Texts

All the ideas for 'Thinking About Mathematics', 'An Argument for the Identity Theory' and 'Causes and Counterfactuals'

unexpand these ideas     |    start again     |     specify just one area for these texts


22 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
17. Mind and Body / C. Functionalism / 4. Causal Functionalism
Experiences are defined by their causal role, and causal roles belong to physical states [Lewis]
     Full Idea: The definitive characteristic of any experience is its causal role, its most typical causes and effects; but we materialists believe that these causal roles which belong by analytic necessity to experiences belong in fact to certain physical states.
     From: David Lewis (An Argument for the Identity Theory [1966], §I)
     A reaction: This is the Causal version of functionalism, which Armstrong also developed. The word 'typical' leads later to a teleological element in the theory (e.g. in Lycan). There are other things to say about mental states than just their causal role.
'Pain' contingently names the state that occupies the causal role of pain [Lewis]
     Full Idea: On my theory, 'pain' is a contingent name - that is, a name with different denotations in different possible worlds - since in any world, 'pain' names whatever state happens in that world to occupy the causal role definitive of pain.
     From: David Lewis (An Argument for the Identity Theory [1966], §II n6)
     A reaction: Better to say that 'pain' (like 'sound') is ambiguous. It is indiscriminately used by English-speakers to mean [1] the raw quale that we experience when damaged, and [2] whatever it is that leads to pain behaviour. Maybe frogs have 2 but not 1.
26. Natural Theory / C. Causation / 1. Causation
Causal statements are used to explain, to predict, to control, to attribute responsibility, and in theories [Kim]
     Full Idea: The function of causal statements is 1) to explain events, 2) for predictive usefulness, 3) to help control events, 4) with agents, to attribute moral responsibility, 5) in physical theory. We should judge causal theories by how they account for these.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.207)
     A reaction: He suggests that Lewis's counterfactual theory won't do well on this test. I think the first one is what matters. Philosophy aims to understand, and that is achieved through explanation. Regularity and counterfactual theories explain very little.
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
Many counterfactuals have nothing to do with causation [Kim, by Tooley]
     Full Idea: Kim has pointed out that there are a number of counterfactuals that have nothing to do with causation. If John marries Mary, then if John had not existed he would not have married Mary, but that is not the cause of their union.
     From: report of Jaegwon Kim (Causes and Counterfactuals [1973], 5.2) by Michael Tooley - Causation and Supervenience
     A reaction: One might not think that this mattered, but it leaves the problem of distinguishing between the causal counterfactuals and the rest (and you mustn't mention causation when you are doing it!).
Counterfactuals can express four other relations between events, apart from causation [Kim]
     Full Idea: Counterfactuals can express 'analytical' dependency, or the fact that one event is part of another, or an action done by doing another, or (most interestingly) an event can determine another without causally determining it.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.205)
     A reaction: [Kim gives example of each case] Counterfactuals can even express a relation that involves no dependency. Or they might just involve redescription, as in 'If Scott were still alive, then the author of "Waverley" would be too'.
Causation is not the only dependency relation expressed by counterfactuals [Kim]
     Full Idea: The sort of dependency expressed by counterfactual relations is considerably broader than strictly causal dependency, and causal dependency is only one among the heterogeneous group of dependency relationships counterfactuals can express.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.205)
     A reaction: In 'If pigs could fly, one and one still wouldn't make three' there isn't even a dependency. Kim has opened up lines of criticism which make the counterfactual analysis of causation look very implausible to me.
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Many counterfactual truths do not imply causation ('if yesterday wasn't Monday, it isn't Tuesday') [Kim, by Psillos]
     Full Idea: Kim gives a range of examples of counterfactual dependence without causation, as: 'if yesterday wasn't Monday, today wouldn't be Tuesday', and 'if my sister had not given birth, I would not be an uncle'.
     From: report of Jaegwon Kim (Causes and Counterfactuals [1973]) by Stathis Psillos - Causation and Explanation §3.3
     A reaction: This is aimed at David Lewis. The objection seems like commonsense. "If you blink, the cat gets it". Causal claims involve counterfactuals, but they are not definitive of what causation is.