Combining Texts

All the ideas for 'Thinking About Mathematics', 'Events' and 'Dispositional Modality'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / B. Change in Existence / 4. Events / a. Nature of events
The events that suit semantics may not be the events that suit causation [Lewis]
     Full Idea: There is no guarantee that events made for semantics are the same as events that are causes and effects.
     From: David Lewis (Events [1986], I)
     A reaction: This little cri de couer could be a motto for a huge amount of analytic philosophy, which (for some odd reason) thought that mathematics, logic, set theory and formal semantics were good tools for explaining nature.
Events have inbuilt essences, as necessary conditions for their occurrence [Lewis]
     Full Idea: Events have their essences built in, in the form of necessary conditions for their occurrence.
     From: David Lewis (Events [1986], III)
     A reaction: Revealing. He thinks the essence of an event is something which precedes the event. I take it as obvious that if an event has an essence, it will be some features of the event that occur in it and during it. They need to be intrinsic.
Events are classes, and so there is a mereology of their parts [Lewis]
     Full Idea: If events are classes, as I propose, then they have a mereology in the way that all classes do: the parts of a class are its subclasses.
     From: David Lewis (Events [1986], V)
     A reaction: Lewis says events are properties, which he regards as classes. It is not clear that events are strictly mereological. Could one happening be two events? Is WWII a simple sum of its parts? [see p.260]
Some events involve no change; they must, because causal histories involve unchanges [Lewis]
     Full Idea: Not all events involve change. We cannot afford to count the unchanges as nonevents, for the unchanges may be needed to complete causal histories.
     From: David Lewis (Events [1986], VI)
     A reaction: You end up calling non-changes 'events' if you commit to a simplistic theory that all causal histories consist of events. Why not allow conditions as well as events? Lewis concedes that he may be abusing language.
7. Existence / B. Change in Existence / 4. Events / c. Reduction of events
An event is a property of a unique space-time region [Lewis]
     Full Idea: I propose to identify an event with a property, or in other words with a class, a unique spatio-temporal region corresponding to where that event occurs.
     From: David Lewis (Events [1986], II)
     A reaction: [I've run together two separate bits, on p.244 and 245] Lewis cites Montague's similar view, that events are properties of times.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are very abundant (unlike universals), and are used for semantics and higher-order variables [Lewis]
     Full Idea: Properties are abundant, numbering at least beth-3 for properties of individuals alone; they are suited to serve as semantic values of arbitrarily complex predicates and gerunds, and higher-order variables. (If there are universals, they are sparse).
     From: David Lewis (Events [1986], II n2)
     A reaction: To me this is an outrageous hijacking of the notion of property which is needed for explaining the natural world. He seems to be talking about predicates. He wants to leave me with his silly universals - well I don't want them, thank you.
10. Modality / A. Necessity / 1. Types of Modality
Dispositionality has its own distinctive type of modality [Mumford/Anjum]
     Full Idea: We contend that dispositionality involves a non-alethic, sui generis, irreducible modality.
     From: S.Mumford/R.Lill Anjum (Dispositional Modality [2011], 1)
     A reaction: This is a lovely bold proposal, and seems to be supported by Werner Heisenberg, in Idea 17534.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
26. Natural Theory / C. Causation / 1. Causation
Causation is a general relation derived from instances of causal dependence [Lewis]
     Full Idea: Causation is the ancestral of causal dependence: event c causes event e iff either e depends on c, or e depends on an intermediate event which in turn depends on c, or....
     From: David Lewis (Events [1986], I)
     A reaction: This is Lewis making sure that we don't postulate some huge bogus thing called 'Causation' which is supposed to be in charge of Nature. Good point.