Combining Texts

All the ideas for 'Thinking About Mathematics', 'Intellectual Autobiography' and 'Elements of Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

3. Truth / B. Truthmakers / 5. What Makes Truths / a. What makes truths
Truthmakers are facts 'of' a domain, not something 'in' the domain [Sommers]
     Full Idea: A fact is an existential characteristic 'of' the domain; it is not something 'in' the domain. To search for truth-making facts in the world is indeed futile.
     From: Fred Sommers (Intellectual Autobiography [2005], 'Existence')
     A reaction: Attacking Austin on truth. Helpful. It is hard to see how a physical object has a mysterious power to 'make' a truth. No energy-transfer seems involved in the making. Animals think true thoughts; I suspect that concerns their mental maps of the world.
4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
'Predicable' terms come in charged pairs, with one the negation of the other [Sommers, by Engelbretsen]
     Full Idea: Sommers took the 'predicable' terms of any language to come in logically charged pairs. Examples might be red/nonred, massive/massless, tied/untied, in the house/not in the house. The idea that terms can be negated was essential for such pairing.
     From: report of Fred Sommers (Intellectual Autobiography [2005]) by George Engelbretsen - Trees, Terms and Truth 2
     A reaction: If, as Rumfitt says, we learn affirmation and negation as a single linguistic operation, this would fit well with it, though Rumfitt doubtless (as a fan of classical logic) prefers to negation sentences.
Logic which maps ordinary reasoning must be transparent, and free of variables [Sommers]
     Full Idea: What would a 'laws of thought' logic that cast light on natural language deductive thinking be like? Such a logic must be variable-free, conforming to normal syntax, and its modes of reasoning must be transparent, to make them virtually instantaneous.
     From: Fred Sommers (Intellectual Autobiography [2005], 'How We')
     A reaction: This is the main motivation for Fred Sommers's creation of modern term logic. Even if you are up to your neck in modern symbolic logic (which I'm not), you have to find this idea appealing. You can't leave it to the psychologists.
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Lukasiewicz's L3 logic has three truth-values, T, F and I (for 'indeterminate') [Lukasiewicz, by Fisher]
     Full Idea: In response to Aristotle's sea-battle problem, Lukasiewicz proposed a three-valued logic that has come to be known as L3. In addition to the values true and false (T and F), there is a third truth-value, I, meaning 'indeterminate' or 'possible'.
     From: report of Jan Lukasiewicz (Elements of Mathematical Logic [1928], 7.I) by Jennifer Fisher - On the Philosophy of Logic
     A reaction: [He originated the idea in 1917] In what sense is the third value a 'truth' value? Is 'I don't care' a truth-value? Or 'none of the above'? His idea means that formalization doesn't collapse when things get obscure. You park a few propositions under I.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Predicate logic has to spell out that its identity relation '=' is an equivalent relation [Sommers]
     Full Idea: Because predicate logic contrues identities dyadically, its account of inferences involving identity propositions needs laws or axioms of identity, explicitly asserting that the dyadic realtion in 'x=y' possesses symmetry, reflexivity and transitivity.
     From: Fred Sommers (Intellectual Autobiography [2005], 'Syllogistic')
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Translating into quantificational idiom offers no clues as to how ordinary thinkers reason [Sommers]
     Full Idea: Modern predicate logic's methods of justification, which involve translation into an artificial quantificational idiom, offer no clues to how the average person, knowing no logic and adhering to the vernacular, is so logically adept.
     From: Fred Sommers (Intellectual Autobiography [2005], Intro)
     A reaction: Of course, people are very logically adept when the argument is simple (because, I guess, they can test it against the world), but not at all good when the reasoning becomes more complex. We do, though, reason in ordinary natural language.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / c. not
Sommers promotes the old idea that negation basically refers to terms [Sommers, by Engelbretsen]
     Full Idea: If there is one idea that is the keystone of the edifice that constitutes Sommers's united philosophy it is that terms are the linguistic entities subject to negation in the most basic sense. It is a very old idea, tending to be rejected in modern times.
     From: report of Fred Sommers (Intellectual Autobiography [2005]) by George Engelbretsen - Trees, Terms and Truth 2
     A reaction: Negation in modern logic is an operator applied to sentences, typically writing '¬Fa', which denies that F is predicated of a, with Fa being an atomic sentence. Do we say 'not(Stan is happy)', or 'not-Stan is happy', or 'Stan is not-happy'? Third one?
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Predicates form a hierarchy, from the most general, down to names at the bottom [Sommers]
     Full Idea: We organise our concepts of predicability on a hierarchical tree. At the top are terms like 'interesting', 'exists', 'talked about', which are predicable of anything. At the bottom are names, and in between are predicables of some things and not others.
     From: Fred Sommers (Intellectual Autobiography [2005], 'Category')
     A reaction: The heirarchy seem be arranged simply by the scope of the predicate. 'Tallest' is predicable of anything in principle, but only of a few things in practice. Is 'John Doe' a name? What is 'cosmic' predicable of? Challenging!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / D. Theories of Reality / 2. Realism
Unfortunately for realists, modern logic cannot say that some fact exists [Sommers]
     Full Idea: Unfortunately for the fate of realist philosophy, modern logic's treatment of 'exists' is resolutely inhospitable to facts as referents of phrases of the form 'the existence or non-existence of φ'.
     From: Fred Sommers (Intellectual Autobiography [2005], 'Realism')
     A reaction: Predicate logic has to talk about objects, and then attribute predicates to them. It tends to treat a fact as 'Fa' - this object has this predicate, but that's not really how we understand facts.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
19. Language / B. Reference / 1. Reference theories
In standard logic, names are the only way to refer [Sommers]
     Full Idea: In modern predicate logic, definite reference by proper names is the primary and sole form of reference.
     From: Fred Sommers (Intellectual Autobiography [2005], 'Reference')
     A reaction: Hence we have to translate definite descriptions into (logical) names, or else paraphrase them out of existence. The domain only contains 'objects', so only names can uniquely pick them out.