Combining Texts

All the ideas for 'Thinking About Mathematics', 'Towards a Universal Characteristic' and 'Prior Analytics'

unexpand these ideas     |    start again     |     specify just one area for these texts


33 ideas

4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotle was the first to use schematic letters in logic [Aristotle, by Potter]
     Full Idea: It was Aristotle who initiated the use of the letter of the (Greek) alphabet 'schematically', to stand for an unspecified piece of language of some appropriate grammatical type.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 02 'Aris'
     A reaction: Did he invent it from scratch, or borrow it from the mathematicians? Euclid labels diagrams with letters.
Aristotelian sentences are made up by one of four 'formative' connectors [Aristotle, by Engelbretsen]
     Full Idea: For Aristotle there are four formatives for sentences: 'belongs to some', 'belongs to every', 'belongs to no', and 'does not belong to every'. These are 'copulae'. Aristotle would have written 'wise belongs to some man'.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by George Engelbretsen - Trees, Terms and Truth 3
     A reaction: A rather set-theoretic reading. This invites a Quinean scepticism about whether wisdom is some entity which can 'belong' to a person. It makes trope theory sound attractive, offering a unique wisdom that is integrated into that particular person.
Aristotelian identified 256 possible syllogisms, saying that 19 are valid [Aristotle, by Devlin]
     Full Idea: Aristotle identified four 'figures' of argument, based on combinations of Subject (S) and Predicate (P) and Middle term (M). The addition of 'all' and 'some', and 'has' and 'has not' got the property, resulted in 256 possible syllogisms, 19 of them valid.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: [Compressed version of Devlin] What Aristotle did was astonishing, and must be one of the key ideas of western civilization, even though a lot of his assumptions have been revised or rejected.
Aristotle replaced Plato's noun-verb form with unions of pairs of terms by one of four 'copulae' [Aristotle, by Engelbretsen/Sayward]
     Full Idea: Aristotle replaced the Platonic noun-verb account of logical syntax with a 'copular' account. A sentence is a pair of terms bound together logically (not necessarily grammatically) by one of four 'logical copulae' (every, none, some, not some).
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Engelbretsen,G/Sayward,C - Philosophical Logic: Intro to Advanced Topics 8
     A reaction: So the four copulas are are-all, are-never, are-sometimes, and are-sometime-not. Consider 'men' and 'mortal'. Alternatively, Idea 18909.
Aristotle listed nineteen valid syllogisms (though a few of them were wrong) [Aristotle, by Devlin]
     Full Idea: Aristotle listed a total of nineteen syllogisms involved in logical reasoning, though some of the ones on his list were subsequently shown to be invalid.
     From: report of Aristotle (Prior Analytics [c.328 BCE], Ch.1) by Keith Devlin - Goodbye Descartes
     A reaction: It is quite upsetting to think that the founding genius got some of it wrong, but that just shows how subtle and complex the analysis of rational thought can be.
Aristotelian syllogisms are three-part, subject-predicate, existentially committed, with laws of thought [Aristotle, by Hanna]
     Full Idea: Aristotle's logic is based on the triadic syllogism, the distinction between subject and one-place predicates, that universal claims have existential commitment, and bivalence, excluded middle and noncontradiction.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Robert Hanna - Rationality and Logic 2.2
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Aristotle's said some Fs are G or some Fs are not G, forgetting that there might be no Fs [Bostock on Aristotle]
     Full Idea: Aristotle's system accepted as correct some laws which nowadays we reject, for example |= (Some Fs are G) or (some Fs are not G). He failed to take into account the possibility of there being no Fs at all.
     From: comment on Aristotle (Prior Analytics [c.328 BCE]) by David Bostock - Intermediate Logic 8.4
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
There are three different deductions for actual terms, necessary terms and possible terms [Aristotle]
     Full Idea: Since to belong, to belong of necessity, and to be possible to belong are different, ..there will be different deductions for each; one deduction will be from necessary terms, one from terms which belong, and one from possible terms.
     From: Aristotle (Prior Analytics [c.328 BCE], 29b29-35)
     A reaction: Fitting and Mendelsohn cite this as the earliest thoughts on modal logic. but Kneale and Kneale say that Aristotle got into a muddle, and so was unable to create a workable system.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
'Blind thought' is reasoning without recognition of the ingredients of the reasoning [Leibniz, by Arthur,R]
     Full Idea: Leibniz invented the concept of 'blind thought' - reasoning by a manipulation of characters without being able to recognise what each character stands for.
     From: report of Gottfried Leibniz (Towards a Universal Characteristic [1677]) by Richard T.W. Arthur - Leibniz
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Deduction is when we suppose one thing, and another necessarily follows [Aristotle]
     Full Idea: A deduction is a discourse in which, certain things having been supposed, something different from the things supposed results of necessity because these things are so.
     From: Aristotle (Prior Analytics [c.328 BCE], 24b18)
     A reaction: Notice that it is modal ('suppose', rather than 'know'), that necessity is involved, which is presumably metaphysical necessity, and that there are assumptions about what would be true, and not just what follows from what.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Aristotle places terms at opposite ends, joined by a quantified copula [Aristotle, by Sommers]
     Full Idea: Aristotle often preferred to formulate predications by placing the terms at opposite ends of the sentence and joining them by predicating expressions like 'belongs-to-some' or 'belongs-to-every'.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Fred Sommers - Intellectual Autobiography 'Conceptions'
     A reaction: This is Sommers's picture of Aristotle, which led Sommers to develop his modern Term Logic.
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Aristotle's logic is based on the subject/predicate distinction, which leads him to substances and properties [Aristotle, by Benardete,JA]
     Full Idea: Basic to Aristotle's logic is the grammatical distinction between subject and predicate, which he glosses in terms of the contrast between a substance and its properties.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by José A. Benardete - Metaphysics: the logical approach Intro
     A reaction: The introduction of quantifiers and 'logical form' can't disguise the fact that we still talk about (and with) objects and predicates, because no one can think of any other way to talk.
5. Theory of Logic / G. Quantification / 1. Quantification
Affirming/denying sentences are universal, particular, or indeterminate [Aristotle]
     Full Idea: Affirming/denying sentences are universal, particular, or indeterminate. Belonging 'to every/to none' is universal; belonging 'to some/not to some/not to every' is particular; belonging or not belonging (without universal/particular) is indeterminate.
     From: Aristotle (Prior Analytics [c.328 BCE], 24a16)
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
Aristotelian logic has two quantifiers of the subject ('all' and 'some') [Aristotle, by Devlin]
     Full Idea: Aristotelian logic has two quantifiers of the subject ('all' and 'some'), and two ways to combine the subject with the predicate ('have', and 'have not'), giving four propositions: all-s-have-p, all-s-have-not-p, some-s-have-p, and some-s-have-not-p.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: Frege seems to have switched from 'some' to 'at-least-one'. Since then other quantifiers have been proposed. See, for example, Ideas 7806 and 6068.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We can assign a characteristic number to every single object [Leibniz]
     Full Idea: The true principle is that we can assign to every object its determined characteristic number.
     From: Gottfried Leibniz (Towards a Universal Characteristic [1677], p.18)
     A reaction: I add this as a predecessor of Gödel numbering. It is part of Leibniz's huge plan for a Universal Characteristic, to map reality numerically, and then calculate the truths about it. Gödel seems to allow metaphysics to be done mathematically.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Everything is subsumed under number, which is a metaphysical statics of the universe, revealing powers [Leibniz]
     Full Idea: There is nothing which is not subsumable under number; number is therefore a fundamental metaphysical form, and arithmetic a sort of statics of the universe, in which the powers of things are revealed.
     From: Gottfried Leibniz (Towards a Universal Characteristic [1677], p.17)
     A reaction: I take numbers to be a highly generalised and idealised description of an aspect of reality (seen as mainly constituted by countable substances). Seeing reality as processes doesn't lead us to number. So I like this idea.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
10. Modality / A. Necessity / 4. De re / De dicto modality
A deduction is necessary if the major (but not the minor) premise is also necessary [Aristotle]
     Full Idea: It sometimes results that the deduction becomes necessary when only one of the premises is necessary (not whatever premise it might be, however, but only the premise in relation to the major extreme [premise]).
     From: Aristotle (Prior Analytics [c.328 BCE], 30a15)
     A reaction: The qualification is brackets is said by Plantinga (1969) to be a recognition of the de re/ de dicto distinction (later taken up by Aquinas). Plantinga gives two examples to illustrate his reading.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Linguistic terms form a hierarchy, with higher terms predicable of increasing numbers of things [Aristotle, by Engelbretsen]
     Full Idea: According to Aristotle, the terms of a language form a finite hierarchy, where the higher terms are predicable of more things than are lower terms.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by George Engelbretsen - Trees, Terms and Truth 3
     A reaction: I would be a bit cautious about placing something precisely in a hierarchy according to how many things it can be predicated of. It is a start, though, in trying to give a decent account of generality, which is a major concept in philosophy.