Combining Texts

All the ideas for 'Thinking About Mathematics', 'Letters to Johann Bernoulli' and 'fragments/reports'

unexpand these ideas     |    start again     |     specify just one area for these texts


22 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / C. Structure of Existence / 6. Fundamentals / c. Monads
A piece of flint contains something resembling perceptions and appetites [Leibniz]
     Full Idea: I don't say that bodies like flint, which are commonly called inanimate, have perceptions and appetition; rather they have something of that sort in them, like worms are in cheese.
     From: Gottfried Leibniz (Letters to Johann Bernoulli [1699], 1698.12.17)
     A reaction: Leibniz is caricatured as thinking that stones are full of little active minds, but he nearly always says that what he is proposing is 'like' or 'analogous to' that. His only real point is that nature is active, as seen in the appetites of animals.
Entelechies are analogous to souls, as other minds are analogous to our own minds [Leibniz]
     Full Idea: Just as we somehow conceive other souls and intelligences on analogy with our own souls, I wanted whatever other primitive entelechies there may be remote from our senses to be conceived on analogy with souls. They are not conceived perfectly.
     From: Gottfried Leibniz (Letters to Johann Bernoulli [1699], 1698.12.17)
     A reaction: This is the clearest evidence I can find that Leibniz does not think of monads as actually being souls. He is struggling to explain their active character. Garber thinks that Leibniz hasn't arrived at proper monads at this date.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / c. Possible but inconceivable
What we cannot imagine may still exist [Leibniz]
     Full Idea: It does not follow that what we can't imagine does not exist.
     From: Gottfried Leibniz (Letters to Johann Bernoulli [1699], 1698.11.18)
     A reaction: This just establishes the common sense end of the debate - that you cannot just use your imagination as the final authority on what exists, or what is possible.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / k. Ethics from nature
The goal is rationality in the selection of things according to nature [Diogenes of Babylon, by Blank]
     Full Idea: Diogenes of Babylon defined the goal to be rationality in the selection and rejection of the things according to nature.
     From: report of Diogenes (Bab) (fragments/reports [c.180 BCE]) by D.L. Blank - Diogenes of Babylon
     A reaction: This captures the central Stoic idea quite nicely. 'Live according to nature', but this always meant 'live according to reason', because that is (as Aristotle had taught) the essence of our nature. This only makes sense if reason and nature coincide.
22. Metaethics / B. Value / 2. Values / e. Death
Death is just the contraction of an animal [Leibniz]
     Full Idea: Death is nothing but the contraction of an animal, just as generation is nothing but its unfolding.
     From: Gottfried Leibniz (Letters to Johann Bernoulli [1699], 1698.11.18)
     A reaction: This is possibly the most bizarre view that I have found in Leibniz. He seemed to thing that if you burnt an animal on a bonfire, some little atom of life would remain among the ashes. I can't see why he would believe such a thing.
22. Metaethics / C. The Good / 1. Goodness / a. Form of the Good
The good is what is perfect by nature [Diogenes of Babylon, by Blank]
     Full Idea: Diogenes of Babylon defined the good as what is perfect by nature.
     From: report of Diogenes (Bab) (fragments/reports [c.180 BCE]) by D.L. Blank - Diogenes of Babylon
     A reaction: This might come close to G.E. Moore's Ideal Utilitarianism, but its dependence on the rather uneasy of concept of 'perfection' makes it questionable. Personally I find it appealing. I wish we had Diogenes' explanation.
23. Ethics / C. Virtue Theory / 3. Virtues / c. Justice
Justice is a disposition to distribute according to desert [Diogenes of Babylon, by Blank]
     Full Idea: Diogenes of Babylon defined justice as the disposition which distributes to everyone what he deserves.
     From: report of Diogenes (Bab) (fragments/reports [c.180 BCE]) by D.L. Blank - Diogenes of Babylon
     A reaction: The questions that arise would be 'what does a new-born baby deserve?', and 'what do animals deserve?', and 'does the lowest and worst of criminals deserve anything at all?'