Combining Texts

All the ideas for 'Thinking About Mathematics', 'A Specimen of Discoveries' and 'Varieties of Ontological Dependence'

unexpand these ideas     |    start again     |     specify just one area for these texts


26 ideas

2. Reason / A. Nature of Reason / 4. Aims of Reason
The two basics of reasoning are contradiction and sufficient reason [Leibniz]
     Full Idea: The two first principles of reasoning are: the principle of contradiction, and the principle of the need for giving a reason.
     From: Gottfried Leibniz (A Specimen of Discoveries [1686], p.75)
     A reaction: Could animals have any reasoning ability (say, in solving a physical problem)? Leibniz's criteria both require language. Note the overlapping of the principle of sufficient reason (there IS a reason) with the contractual idea of GIVING reasons.
2. Reason / D. Definition / 4. Real Definition
Real definitions don't just single out a thing; they must also explain its essence [Koslicki]
     Full Idea: A statement expressing a real definition must also accomplish more than simply to offer two different ways of singling out the same entity, since the definiens must also be explanatory of the essential nature of the definiendum.
     From: Kathrin Koslicki (Varieties of Ontological Dependence [2012], 7.4)
     A reaction: This is why Aristotelian definitions are not just short lexicographical definitions, but may be quite length. Effectively, a definition IS an explanation.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
It is more explanatory if you show how a number is constructed from basic entities and relations [Koslicki]
     Full Idea: Being the successor of the successor of 0 is more explanatory than being predecessor of 3 of the nature of 2, since it mirrors more closely the method by which 2 is constructed from a basic entity, 0, and a relation (successor) taken as primitive.
     From: Kathrin Koslicki (Varieties of Ontological Dependence [2012], 7.4)
     A reaction: This assumes numbers are 'constructed', which they are in the axiomatised system of Peano Arithmetic, but presumably the numbers were given in ordinary experience before 'construction' occurred to anyone. Nevertheless, I really like this.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / C. Structure of Existence / 1. Grounding / b. Relata of grounding
The relata of grounding are propositions or facts, but for dependence it is objects and their features [Koslicki]
     Full Idea: The relata of the grounding relation are typically taken to be facts or propositions, while the relata of ontological dependence ...are objects and their characteristics, activities, constituents and so on.
     From: Kathrin Koslicki (Varieties of Ontological Dependence [2012], 7.5 n25)
     A reaction: Interesting. Good riddance to propositions here, but this seems a bit unfair to facts, since I take facts to be in the world. Audi's concept of 'worldly facts' is what we need here.
9. Objects / D. Essence of Objects / 2. Types of Essence
Modern views want essences just to individuate things across worlds and times [Koslicki]
     Full Idea: According to the approach of Plantinga, Forbes and Mackie, the primary job of essences is to individuate the entities whose essences they are across worlds and times at which these entities exist.
     From: Kathrin Koslicki (Varieties of Ontological Dependence [2012], 7.4 n13)
     A reaction: A helpful simplification of what is going on. I wish those authors would just say this one their first pages. They all get in a right tangle, because individuation is either too easy, or hopeless. 'Tracking' is a good word for this game.
9. Objects / D. Essence of Objects / 4. Essence as Definition
For Fine, essences are propositions true because of identity, so they are just real definitions [Koslicki]
     Full Idea: Fine assumes that essences can be identified with collections of propositions that are true in virtue of the identity of a particular object, or objects. ...There is not, on this approach, much of a distinction between essences and real definitions.
     From: Kathrin Koslicki (Varieties of Ontological Dependence [2012], 7.4)
     A reaction: This won't do, because the essence of a physical object is not a set of propositions, it is some aspects of the object itself, which are described in a definition. Koslicki notes that psuché is an essence, and the soul is hardly a set of propositions!
We need a less propositional view of essence, and so must distinguish it clearly from real definitions [Koslicki]
     Full Idea: To make room for a less propositional conception of essence than that assumed by Fine, I urge that we distinguish more firmly between essences and real definitions (which state these essences in the form of propositions).
     From: Kathrin Koslicki (Varieties of Ontological Dependence [2012], 7.6)
     A reaction: Yes. The idea that essence is just a verbal or conceptual entity would be utterly abhorrent to Aristotle (a hero for Fine), and it is anathema to me too. We intend essences to be in the world (even if we are deceived about that). They explain!
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
A good explanation captures the real-world dependence among the phenomena [Koslicki]
     Full Idea: It is plausible to think that an explanation, when successful, captures or represents (by argument, or a why? question) an underlying real-world relation of dependence which obtains among the phenomena cited.
     From: Kathrin Koslicki (Varieties of Ontological Dependence [2012], 7.6)
     A reaction: She cites causal dependence as an example. I'm incline to think that 'grounding' is a better word for the target of good explanations than is 'dependence' (which can, surely, be mutual, where ground has the directionality needed for explanation).
17. Mind and Body / A. Mind-Body Dualism / 5. Parallelism
Assume that mind and body follow their own laws, but God has harmonised them [Leibniz]
     Full Idea: Why not assume that God initially created the soul and body with so much ingenuity that, whilst each follows its own laws and properties and operations, all thing agree most beautifull among themselves? This is the 'hypothesis of concomitance'.
     From: Gottfried Leibniz (A Specimen of Discoveries [1686], p.80)
     A reaction: They may be in beautifully planned harmony, but how do we know that they are in harmony? Presumably their actions must be compared, and God would even have to harmonise the comparison. Parallelism seems to imply epiphenomenalism or idealism.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
We can abstract to a dependent entity by blocking out features of its bearer [Koslicki]
     Full Idea: In 'feature dependence', the ontologically dependent entity may be thought of as the result of a process of abstraction which takes the 'bearer' as its starting point and arrives at the abstracted entity by blocking out all the irrelevant features.
     From: Kathrin Koslicki (Varieties of Ontological Dependence [2012], 7.6)
     A reaction: She seems unaware that this is traditional abstraction, found in Aristotle, and a commonplace of thought until Frege got his evil hands on abstraction and stole it for other purposes. I'm a fan.
29. Religion / D. Religious Issues / 3. Problem of Evil / b. Human Evil
God doesn't decide that Adam will sin, but that sinful Adam's existence is to be preferred [Leibniz]
     Full Idea: God does not decide whether Adam should sin, but whether that series of things in which there is an Adam whose perfect individual notion involves sin should nevertheless be preferred to others.
     From: Gottfried Leibniz (A Specimen of Discoveries [1686], p.78)
     A reaction: Compare whether the person responsible for setting a road speed limit is responsible for subsequent accidents. Leibniz's belief that the world could have been made no better than it is (by an omnipotent being) strikes me as blind faith, not an argument.