Combining Texts

All the ideas for 'Thinking About Mathematics', 'A Rsum of Metaphysics' and 'Conceptual truth and metaphysical necessity'

unexpand these ideas     |    start again     |     specify just one area for these texts


26 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
10. Modality / C. Sources of Modality / 4. Necessity from Concepts
The necessity of a proposition concerns reality, not our words or concepts [Stalnaker]
     Full Idea: The necessity or contingency of a proposition has nothing to do with our concepts or the meanings of our words. The possibilities would have been the same even if we had never conceived of them.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 1)
     A reaction: This sounds in need of qualification, since some of the propositions will be explicitly about words and concepts. Still, I like this idea.
Conceptual possibilities are metaphysical possibilities we can conceive of [Stalnaker]
     Full Idea: Conceptual possibilities are just (metaphysical) possibilities that we can conceive of.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 1)
10. Modality / D. Knowledge of Modality / 3. A Posteriori Necessary
Critics say there are just an a priori necessary part, and an a posteriori contingent part [Stalnaker]
     Full Idea: Critics say there are no irreducible a posteriori truths. They can be factored into a part that is necessary, but knowable a priori through conceptual analysis, and a part knowable only a posteriori, but contingent. 2-D semantics makes this precise.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 1)
     A reaction: [Critics are Sidelle, Jackson and Chalmers] Interesting. If gold is necessarily atomic number 79, or it wouldn't be gold, that sounds like an analytic truth about gold. Discovering the 79 wasn't a discovery of a necessity. Stalnaker rejects this idea.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A 'centred' world is an ordered triple of world, individual and time [Stalnaker]
     Full Idea: A 'centred' possible world is an ordered triple consisting of a possible world, an individual in the domain of that world, and a time.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 2)
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
18. Thought / C. Content / 6. Broad Content
Meanings aren't in the head, but that is because they are abstract [Stalnaker]
     Full Idea: Meanings ain't in the head. Putnam's famous slogan actually fits Frege's anti-psychologism better than it fits Purnam's and Burge's anti-individualism. The point is that intensions of any kind are abstract objects.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 2)
     A reaction: If intensions are abstract, that leaves (for me) the question of what they are abstracted from. I take it that there are specific brain events that are being abstractly characterised. What do we call those?
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
One view says the causal story is built into the description that is the name's content [Stalnaker]
     Full Idea: In 'causal descriptivism' the causal story is built into the description that is the content of the name (and also incorporates a rigidifying operator to ensure that the descriptions that names abbreviate have wide scope).
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 5)
     A reaction: Not very controversial, I would say, since virtually every fact about the world has a 'causal story' built into it. Must we insist on rigidity in order to have wide scope?
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Two-D says that a posteriori is primary and contingent, and the necessity is the secondary intension [Stalnaker]
     Full Idea: Two-dimensionalism says the necessity of a statement is constituted by the fact that the secondary intensions is a necessary proposition, and their a posteriori character is constituted by the fact that the associated primary intension is contingent.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 2)
     A reaction: This view is found in Sidelle 1989, and then formalised by Jackson and Chalmers. I like metaphysical necessity, but I have some sympathy with the approach. The question must always be 'where does this necessity derive from'?
In one view, the secondary intension is metasemantic, about how the thinker relates to the content [Stalnaker]
     Full Idea: On the metasemantic interpretation of the two-dimensional framework, the second dimension is used to represent the metasemantic facts about the relation between a thinker or speaker and the contents of her thoughts or utterances.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 4)
     A reaction: I'm struggling to think what facts there might be about the relation between myself and the contents of my thoughts. I'm more or less constituted by my thoughts.
22. Metaethics / C. The Good / 3. Pleasure / a. Nature of pleasure
Intelligent pleasure is the perception of beauty, order and perfection [Leibniz]
     Full Idea: An intelligent being's pleasure is simply the perception of beauty, order and perfection.
     From: Gottfried Leibniz (A Résumé of Metaphysics [1697], §18)
     A reaction: Leibniz seems to have inherited this from the Greeks, especially Pythagoras and Plato. Buried in Leibniz's remark I see the Christian fear of physical pleasure. He should have got out more. Must an intelligent being always be intelligent?
28. God / A. Divine Nature / 3. Divine Perfections
Perfection is simply quantity of reality [Leibniz]
     Full Idea: Perfection is simply quantity of reality.
     From: Gottfried Leibniz (A Résumé of Metaphysics [1697], §11)
     A reaction: An interesting claim, but totally beyond my personal comprehension. I presume he inherited 'quantity of reality' from Plato, e.g. as you move up the Line from shadows to Forms you increase the degree of reality. I see 'real' as all-or-nothing.
29. Religion / D. Religious Issues / 3. Problem of Evil / b. Human Evil
Evil serves a greater good, and pain is necessary for higher pleasure [Leibniz]
     Full Idea: Evils themselves serve a greater good, and the fact that pains are found in minds is necessary if they are to reach greater pleasures.
     From: Gottfried Leibniz (A Résumé of Metaphysics [1697], §23)
     A reaction: How much pain is needed to qualify for the 'greater pleasures'? Some people receive an awful lot. I am not sure exactly how an evil can 'serve' a greater good. Is he recommending evil?