Combining Texts

All the ideas for 'Thinking About Mathematics', 'Monadology' and 'Thinking About Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


76 ideas

2. Reason / B. Laws of Thought / 2. Sufficient Reason
No fact can be real and no proposition true unless there is a Sufficient Reason (even if we can't know it) [Leibniz]
     Full Idea: The principle of sufficient reason says no fact can be real or existing and no proposition can be true unless there is a sufficient reason why it should be thus and not otherwise, even though in most cases these reasons cannot be known to us.
     From: Gottfried Leibniz (Monadology [1716], §32)
     A reaction: I think of this as my earliest philosophical perception, a childish rebellion against being told that there was 'no reason' for something. My intuition tells me that it is correct, and the foundation of ontology and truth. Don't ask me to justify it!
3. Truth / D. Coherence Truth / 1. Coherence Truth
Everything in the universe is interconnected, so potentially a mind could know everything [Leibniz]
     Full Idea: Every body is sensitive to everything in the universe, so that one who saw everything could read in each body what is happening everywhere, and even what has happened and will happen.
     From: Gottfried Leibniz (Monadology [1716], §61)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Three traditional names of rules are 'Simplification', 'Addition' and 'Disjunctive Syllogism' [Read]
     Full Idea: Three traditional names for rules are 'Simplification' (P from 'P and Q'), 'Addition' ('P or Q' from P), and 'Disjunctive Syllogism' (Q from 'P or Q' and 'not-P').
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / a. Systems of modal logic
Necessity is provability in S4, and true in all worlds in S5 [Read]
     Full Idea: In S4 necessity is said to be informal 'provability', and in S5 it is said to be 'true in every possible world'.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: It seems that the S4 version is proof-theoretic, and the S5 version is semantic.
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
There are fuzzy predicates (and sets), and fuzzy quantifiers and modifiers [Read]
     Full Idea: In fuzzy logic, besides fuzzy predicates, which define fuzzy sets, there are also fuzzy quantifiers (such as 'most' and 'few') and fuzzy modifiers (such as 'usually').
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Same say there are positive, negative and neuter free logics [Read]
     Full Idea: It is normal to classify free logics into three sorts; positive free logics (some propositions with empty terms are true), negative free logics (they are false), and neuter free logics (they lack truth-value), though I find this unhelpful and superficial.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Realisms like the full Comprehension Principle, that all good concepts determine sets [Read]
     Full Idea: Hard-headed realism tends to embrace the full Comprehension Principle, that every well-defined concept determines a set.
     From: Stephen Read (Thinking About Logic [1995], Ch.8)
     A reaction: This sort of thing gets you into trouble with Russell's paradox (though that is presumably meant to be excluded somehow by 'well-defined'). There are lots of diluted Comprehension Principles.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Not all validity is captured in first-order logic [Read]
     Full Idea: We must recognise that first-order classical logic is inadequate to describe all valid consequences, that is, all cases in which it is impossible for the premisses to be true and the conclusion false.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: This is despite the fact that first-order logic is 'complete', in the sense that its own truths are all provable.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The non-emptiness of the domain is characteristic of classical logic [Read]
     Full Idea: The non-emptiness of the domain is characteristic of classical logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Semantics must precede proof in higher-order logics, since they are incomplete [Read]
     Full Idea: For the realist, study of semantic structures comes before study of proofs. In higher-order logic is has to, for the logics are incomplete.
     From: Stephen Read (Thinking About Logic [1995], Ch.9)
     A reaction: This seems to be an important general observation about any incomplete system, such as Peano arithmetic. You may dream the old rationalist dream of starting from the beginning and proving everything, but you can't. Start with truth and meaning.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
We should exclude second-order logic, precisely because it captures arithmetic [Read]
     Full Idea: Those who believe mathematics goes beyond logic use that fact to argue that classical logic is right to exclude second-order logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
A theory of logical consequence is a conceptual analysis, and a set of validity techniques [Read]
     Full Idea: A theory of logical consequence, while requiring a conceptual analysis of consequence, also searches for a set of techniques to determine the validity of particular arguments.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Logical consequence isn't just a matter of form; it depends on connections like round-square [Read]
     Full Idea: If classical logic insists that logical consequence is just a matter of the form, we fail to include as valid consequences those inferences whose correctness depends on the connections between non-logical terms (such as 'round' and 'square').
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: He suggests that an inference such as 'round, so not square' should be labelled as 'materially valid'.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Falsehood involves a contradiction, and truth is contradictory of falsehood [Leibniz]
     Full Idea: We judge to be false that which involves a contradiction, and true that which is opposed or contradictory to the false.
     From: Gottfried Leibniz (Monadology [1716], §31)
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is logically closed, which means infinite premisses [Read]
     Full Idea: A 'theory' is any logically closed set of propositions, ..and since any proposition has infinitely many consequences, including all the logical truths, so that theories have infinitely many premisses.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: Read is introducing this as the essential preliminary to an account of the Compactness Theorem, which relates these infinite premisses to the finite.
5. Theory of Logic / G. Quantification / 1. Quantification
Quantifiers are second-order predicates [Read]
     Full Idea: Quantifiers are second-order predicates.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
     A reaction: [He calls this 'Frege's insight'] They seem to be second-order in Tarski's sense, that they are part of a metalanguage about the sentence, rather than being a part of the sentence.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
In second-order logic the higher-order variables range over all the properties of the objects [Read]
     Full Idea: The defining factor of second-order logic is that, while the domain of its individual variables may be arbitrary, the range of the first-order variables is all the properties of the objects in its domain (or, thinking extensionally, of the sets objects).
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The key point is that the domain is 'all' of the properties. How many properties does an object have. You need to decide whether you believe in sparse or abundant properties (I vote for very sparse indeed).
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth is the conclusion of a valid inference with no premisses [Read]
     Full Idea: Logical truth is a degenerate, or extreme, case of consequence. A logical truth is the conclusion of a valid inference with no premisses, or a proposition in the premisses of an argument which is unnecessary or may be suppressed.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Any first-order theory of sets is inadequate [Read]
     Full Idea: Any first-order theory of sets is inadequate because of the Löwenheim-Skolem-Tarski property, and the consequent Skolem paradox.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The limitation is in giving an account of infinities.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is when any consequence of infinite propositions is the consequence of a finite subset [Read]
     Full Idea: Classical logical consequence is compact, which means that any consequence of an infinite set of propositions (such as a theory) is a consequence of some finite subset of them.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness does not deny that an inference can have infinitely many premisses [Read]
     Full Idea: Compactness does not deny that an inference can have infinitely many premisses. It can; but classically, it is valid if and only if the conclusion follows from a finite subset of them.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness blocks the proof of 'for every n, A(n)' (as the proof would be infinite) [Read]
     Full Idea: Compact consequence undergenerates - there are intuitively valid consequences which it marks as invalid, such as the ω-rule, that if A holds of the natural numbers, then 'for every n, A(n)', but the proof of that would be infinite, for each number.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness makes consequence manageable, but restricts expressive power [Read]
     Full Idea: Compactness is a virtue - it makes the consequence relation more manageable; but it is also a limitation - it limits the expressive power of the logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The major limitation is that wholly infinite proofs are not permitted, as in Idea 10977.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Self-reference paradoxes seem to arise only when falsity is involved [Read]
     Full Idea: It cannot be self-reference alone that is at fault. Rather, what seems to cause the problems in the paradoxes is the combination of self-reference with falsity.
     From: Stephen Read (Thinking About Logic [1995], Ch.6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Infinite cuts and successors seems to suggest an actual infinity there waiting for us [Read]
     Full Idea: Every potential infinity seems to suggest an actual infinity - e.g. generating successors suggests they are really all there already; cutting the line suggests that the point where the cut is made is already in place.
     From: Stephen Read (Thinking About Logic [1995], Ch.8)
     A reaction: Finding a new gambit in chess suggests it was there waiting for us, but we obviously invented chess. Daft.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Although second-order arithmetic is incomplete, it can fully model normal arithmetic [Read]
     Full Idea: Second-order arithmetic is categorical - indeed, there is a single formula of second-order logic whose only model is the standard model ω, consisting of just the natural numbers, with all of arithmetic following. It is nevertheless incomplete.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: This is the main reason why second-order logic has a big fan club, despite the logic being incomplete (as well as the arithmetic).
Second-order arithmetic covers all properties, ensuring categoricity [Read]
     Full Idea: Second-order arithmetic can rule out the non-standard models (with non-standard numbers). Its induction axiom crucially refers to 'any' property, which gives the needed categoricity for the models.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
Von Neumann numbers are helpful, but don't correctly describe numbers [Read]
     Full Idea: The Von Neumann numbers have a structural isomorphism to the natural numbers - each number is the set of all its predecessors, so 2 is the set of 0 and 1. This helps proofs, but is unacceptable. 2 is not a set with two members, or a member of 3.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / C. Structure of Existence / 6. Fundamentals / c. Monads
The monad idea incomprehensibly spiritualises matter, instead of materialising soul [La Mettrie on Leibniz]
     Full Idea: The Leibnizians with their monads have constructed an incomprehensible hypothesis. They have spiritualized matter rather than materialising the soul.
     From: comment on Gottfried Leibniz (Monadology [1716]) by Julien Offray de La Mettrie - Machine Man p.3
     A reaction: I agree with La Mettrie. This disagreement shows, I think, how important the problem of interaction between mind and body was in the century after Descartes. Drastic action seemed needed to bridge the gap, one way or the other.
He replaced Aristotelian continuants with monads [Leibniz, by Wiggins]
     Full Idea: In the end Leibniz dethroned Aristotelian continuants, seen as imperfect from his point of view, in favour of monads.
     From: report of Gottfried Leibniz (Monadology [1716]) by David Wiggins - Sameness and Substance Renewed 3.1
     A reaction: I take the 'continuants' to be either the 'ultimate subject of predication' (in 'Categories'), or 'essences' (in 'Metaphysics'). Since monads seem to be mental (presumably to explain the powers of things), this strikes me as a bit mad.
Is a drop of urine really an infinity of thinking monads? [Voltaire on Leibniz]
     Full Idea: Can you really maintain that a drop of urine is an infinity of monads, and that each one of these has ideas, however obscure, of the entire universe?
     From: comment on Gottfried Leibniz (Monadology [1716]) by Francois-Marie Voltaire - works Vol 22:434
     A reaction: Monads are a bit like Christian theology - if you meet them cold they seem totally ridiculous, but if you meet them after ten years of careful preliminary study they make (apparently) complete sense. Defenders of panpsychism presumably like them.
It is unclear in 'Monadology' how extended bodies relate to mind-like monads. [Garber on Leibniz]
     Full Idea: It is never clear in the 'Monadologie' how exactly the world of extended bodies is related to the world of simple substances, the world of non-extended and mind-like monads.
     From: comment on Gottfried Leibniz (Monadology [1716]) by Daniel Garber - Leibniz:Body,Substance,Monad 9
     A reaction: Leibniz was always going to hit the interaction problem, as soon as he started giving an increasingly spiritual account of what a substance, and hence marginalising the 'force' which had held centre-stage earlier on. Presumably they are 'parallel'.
Changes in a monad come from an internal principle, and the diversity within its substance [Leibniz]
     Full Idea: A monad's natural changes come from an internal principle, ...but there must be diversity in that which changes, which produces the specification and variety of substances.
     From: Gottfried Leibniz (Monadology [1716], §11-12)
     A reaction: You don't have to like monads to like this generalisation (and Perkins says Leibniz had a genius for generalisations). Metaphysics must give an account of change. Succeeding time-slices etc explain nothing. Principle and substance must meet.
A 'monad' has basic perception and appetite; a 'soul' has distinct perception and memory [Leibniz]
     Full Idea: The general name 'monad' or 'entelechy' may suffice for those substances which have nothing but perception and appetition; the name 'souls' may be reserved for those having perception that is more distinct and accompanied by memory.
     From: Gottfried Leibniz (Monadology [1716], §19)
     A reaction: It is basic to the study of Leibniz that you don't think monads are full-blown consciousnesses. He isn't really a panpsychist, because the level of mental activity is so minimal. There seem to be degrees of monadhood.
7. Existence / D. Theories of Reality / 10. Vagueness / d. Vagueness as linguistic
Would a language without vagueness be usable at all? [Read]
     Full Idea: We must ask whether a language without vagueness would be usable at all.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: Popper makes a similar remark somewhere, with which I heartily agreed. This is the idea of 'spreading the word' over the world, which seems the right way of understanding it.
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
Identities and the Indiscernibility of Identicals don't work with supervaluations [Read]
     Full Idea: In supervaluations, the Law of Identity has no value for empty names, and remains so if extended. The Indiscernibility of Identicals also fails if extending it for non-denoting terms, where Fa comes out true and Fb false.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
A 'supervaluation' gives a proposition consistent truth-value for classical assignments [Read]
     Full Idea: A 'supervaluation' says a proposition is true if it is true in all classical extensions of the original partial valuation. Thus 'A or not-A' has no valuation for an empty name, but if 'extended' to make A true or not-true, not-A always has opposite value.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
Supervaluations say there is a cut-off somewhere, but at no particular place [Read]
     Full Idea: The supervaluation approach to vagueness is to construe vague predicates not as ones with fuzzy borderlines and no cut-off, but as having a cut-off somewhere, but in no particular place.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: Presumably you narrow down the gap by supervaluation, then split the difference to get a definite value.
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
A haecceity is a set of individual properties, essential to each thing [Read]
     Full Idea: The haecceitist (a neologism coined by Duns Scotus, pronounced 'hex-ee-it-ist', meaning literally 'thisness') believes that each thing has an individual essence, a set of properties which are essential to it.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: This seems to be a difference of opinion over whether a haecceity is a set of essential properties, or a bare particular. The key point is that it is unique to each entity.
9. Objects / B. Unity of Objects / 2. Substance / e. Substance critique
If a substance is just a thing that has properties, it seems to be a characterless non-entity [Leibniz, by Macdonald,C]
     Full Idea: For Leibniz, to distinguish between a substance and its properties in order to provide a thing or entity in which properties can inhere leads necessarily to the absurd conclusion that the substance itself must be a truly characterless non-entity.
     From: report of Gottfried Leibniz (Monadology [1716]) by Cynthia Macdonald - Varieties of Things Ch.3
     A reaction: This is obviously one of the basic thoughts in any discussion of substances. It is why physicists ignore them, and Leibniz opted for a 'bundle' theory. But the alternative seems daft too - free-floating properties, hooked onto one another.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
There must be some internal difference between any two beings in nature [Leibniz]
     Full Idea: There are never two beings in nature that are perfectly alike, two beings in which it is not possible to discover an internal difference, that is, one founded on an intrinsic denomination.
     From: Gottfried Leibniz (Monadology [1716], §09)
     A reaction: From this it follows that if two things really are indiscernible, then we must say that they are one thing. He says monads all differ from one another. People certainly do. Leibniz must say this of electrons. How can he know this?
10. Modality / A. Necessity / 2. Nature of Necessity
Equating necessity with truth in every possible world is the S5 conception of necessity [Read]
     Full Idea: The equation of 'necessity' with 'true in every possible world' is known as the S5 conception, corresponding to the strongest of C.I.Lewis's five modal systems.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: Are the worlds naturally, or metaphysically, or logically possible?
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
The standard view of conditionals is that they are truth-functional [Read]
     Full Idea: The standard view of conditionals is that they are truth-functional, that is, that their truth-values are determined by the truth-values of their constituents.
     From: Stephen Read (Thinking About Logic [1995], Ch.3)
The point of conditionals is to show that one will accept modus ponens [Read]
     Full Idea: The point of conditionals is to show that one will accept modus ponens.
     From: Stephen Read (Thinking About Logic [1995], Ch.3)
     A reaction: [He attributes this idea to Frank Jackson] This makes the point, against Grice, that the implication of conditionals is not conversational but a matter of logical convention. See Idea 21396 for a very different view.
Some people even claim that conditionals do not express propositions [Read]
     Full Idea: Some people even claim that conditionals do not express propositions.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: See Idea 14283, where this appears to have been 'proved' by Lewis, and is not just a view held by some people.
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Truths of reason are known by analysis, and are necessary; facts are contingent, and their opposites possible [Leibniz]
     Full Idea: There are two kinds of truths: of reasoning and of facts. Truths of reasoning are necessary and their opposites impossible. Facts are contingent and their opposites possible. A necessary truth is known by analysis.
     From: Gottfried Leibniz (Monadology [1716], §33)
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Knowledge of possible worlds is not causal, but is an ontology entailed by semantics [Read]
     Full Idea: The modal Platonist denies that knowledge always depends on a causal relation. The reality of possible worlds is an ontological requirement, to secure the truth-values of modal propositions.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: [Reply to Idea 10982] This seems to be a case of deriving your metaphyics from your semantics, of which David Lewis seems to be guilty, and which strikes me as misguided.
10. Modality / E. Possible worlds / 1. Possible Worlds / c. Possible worlds realism
How can modal Platonists know the truth of a modal proposition? [Read]
     Full Idea: If modal Platonism was true, how could we ever know the truth of a modal proposition?
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: I take this to be very important. Our knowledge of modal truths must depend on our knowledge of the actual world. The best answer seems to involve reference to the 'powers' of the actual world. A reply is in Idea 10983.
10. Modality / E. Possible worlds / 1. Possible Worlds / d. Possible worlds actualism
Actualism is reductionist (to parts of actuality), or moderate realist (accepting real abstractions) [Read]
     Full Idea: There are two main forms of actualism: reductionism, which seeks to construct possible worlds out of some more mundane material; and moderate realism, in which the actual concrete world is contrasted with abstract, but none the less real, possible worlds.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: I am a reductionist, as I do not take abstractions to be 'real' (precisely because they have been 'abstracted' from the things that are real). I think I will call myself a 'scientific modalist' - we build worlds from possibilities, discovered by science.
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / c. Worlds as propositions
A possible world is a determination of the truth-values of all propositions of a domain [Read]
     Full Idea: A possible world is a complete determination of the truth-values of all propositions over a certain domain.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: Even if the domain is very small? Even if the world fitted the logic nicely, but was naturally impossible?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
If worlds are concrete, objects can't be present in more than one, and can only have counterparts [Read]
     Full Idea: If each possible world constitutes a concrete reality, then no object can be present in more than one world - objects may have 'counterparts', but cannot be identical with them.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: This explains clearly why in Lewis's modal realist scheme he needs counterparts instead of rigid designation. Sounds like a slippery slope. If you say 'Humphrey might have won the election', who are you talking about?
12. Knowledge Sources / A. A Priori Knowledge / 4. A Priori as Necessities
Mathematical analysis ends in primitive principles, which cannot be and need not be demonstrated [Leibniz]
     Full Idea: At the end of the analytical method in mathematics there are simple ideas of which no definition can be given. Moreover there are axioms and postulates, in short, primitive principles, which cannot be demonstrated and do not need demonstration.
     From: Gottfried Leibniz (Monadology [1716], §35)
     A reaction: My view is that we do not know such principles when we apprehend them in isolation. I would call them 'intuitions'. They only ascend to the status of knowledge when the mathematics is extended and derived from them, and found to work.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
We all expect the sun to rise tomorrow by experience, but astronomers expect it by reason [Leibniz]
     Full Idea: When we expect it to be day tomorrow, we all behave as empiricists, because until now it has always happened thus. The astronomer alone knows this by reason.
     From: Gottfried Leibniz (Monadology [1716], §28)
15. Nature of Minds / B. Features of Minds / 3. Privacy
Increase a conscious machine to the size of a mill - you still won't see perceptions in it [Leibniz]
     Full Idea: If a conscious machine were increased in size, one might enter it like a mill, but we should only see the parts impinging on one another; we should not see anything which would explain a perception.
     From: Gottfried Leibniz (Monadology [1716], §17)
     A reaction: A wonderful image for capturing a widely held intuition. It seems to motivate Colin McGinn's 'Mysterianism'. The trouble is Leibniz didn't think big/small enough. Down at the level of molecules it might become obvious what a perception is. 'Might'.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
The mind abstracts ways things might be, which are nonetheless real [Read]
     Full Idea: Ways things might be are real, but only when abstracted from the actual way things are. They are brought out and distinguished by the mind, by abstraction, but are not dependent on mind for their existence.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: To me this just flatly contradicts itself. The idea that the mind can 'bring something out' by its operations, with the result being then accepted as part of reality is nonsense on stilts. What is real is the powers that make the possibilities.
16. Persons / C. Self-Awareness / 2. Knowing the Self
We know the 'I' and its contents by abstraction from awareness of necessary truths [Leibniz]
     Full Idea: It is through the knowledge of necessary truths and through their abstraction that we rise to reflective acts, which enable us to think of that which is called "I" and enable us to consider that this or that is in us.
     From: Gottfried Leibniz (Monadology [1716], §30)
     A reaction: For Leibniz, necessary truth can only be known a priori. Sense experience won't reveal the self, as Hume observed. We evidently 'abstract' the idea of 'I' from the nature of a priori thought. Animals have no self (or morals) for this reason.
19. Language / C. Assigning Meanings / 4. Compositionality
Negative existentials with compositionality make the whole sentence meaningless [Read]
     Full Idea: A problem with compositionality is negative existential propositions. If some of the terms of the proposition are empty, and don't refer, then compositionality implies that the whole will lack meaning too.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
     A reaction: I don't agree. I don't see why compositionality implies holism about sentence-meaning. If I say 'that circular square is a psychopath', you understand the predication, despite being puzzled by the singular term.
19. Language / D. Propositions / 1. Propositions
A proposition objectifies what a sentence says, as indicative, with secure references [Read]
     Full Idea: A proposition makes an object out of what is said or expressed by the utterance of a certain sort of sentence, namely, one in the indicative mood which makes sense and doesn't fail in its references. It can then be an object of thought and belief.
     From: Stephen Read (Thinking About Logic [1995], Ch.1)
     A reaction: Nice, but two objections: I take it to be crucial to propositions that they eliminate ambiguities, and I take it that animals are capable of forming propositions. Read seems to regard them as fictions, but I take them to be brain events.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
The true elements are atomic monads [Leibniz]
     Full Idea: Monads are the true atoms of nature and, in brief, the elements of things.
     From: Gottfried Leibniz (Monadology [1716], (opening)), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 2
     A reaction: Thus in one sentence Leibniz gives us a theory of natural elements, and an account of atoms. This kind of speculation got metaphysics a bad name when science unravelled a more accurate picture. The bones must be picked out of Leibniz.
28. God / A. Divine Nature / 3. Divine Perfections
This is the most perfect possible universe, in its combination of variety with order [Leibniz]
     Full Idea: From all the possible universes God chooses this one to obtain as much variety as possible, but with the greatest order possible; that is, it is the means of obtaining the greatest perfection possible.
     From: Gottfried Leibniz (Monadology [1716], §58)
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
God alone (the Necessary Being) has the privilege that He must exist if He is possible [Leibniz]
     Full Idea: God alone (or the Necessary Being) has the privilege that He must exist if He is possible.
     From: Gottfried Leibniz (Monadology [1716], §45)