Combining Texts

All the ideas for 'Thinking About Mathematics', 'Words without Objects' and 'Remarks on the Foundations of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


27 ideas

3. Truth / H. Deflationary Truth / 1. Redundant Truth
'It is true that this follows' means simply: this follows [Wittgenstein]
     Full Idea: The proposition: "It is true that this follows from that" means simply: this follows from that.
     From: Ludwig Wittgenstein (Remarks on the Foundations of Mathematics [1938], p.38), quoted by Robert Hanna - Rationality and Logic 6
     A reaction: Presumably this remark is simply expressing Wittgenstein's later agreement with the well-known view of Ramsey. Early Wittgenstein had endorsed a correspondence view of truth.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
If plural variables have 'some values', then non-count variables have 'some value' [Laycock]
     Full Idea: If a plural variable is said to have not a single value but some values (some clothes), then a non-count variable may have, more quirkier still, some value (some clothing, for instance) in ranging arbitrarily over the scattered stuff.
     From: Henry Laycock (Words without Objects [2006], 4.4)
     A reaction: We seem to need the notion of a sample, or an archetype, to fit the bill. I hereby name them 'sample variables'. Damn - Laycock got there first, on p.137.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plurals are semantical but not ontological [Laycock]
     Full Idea: Plurality is a semantical but not also an ontological construction.
     From: Henry Laycock (Words without Objects [2006], Intro 4)
     A reaction: I love it when philososphers make simple and illuminating remarks like this. You could read 500 pages of technical verbiage about plural reference without grasping that this is the underlying issue. Sounds right to me.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Some non-count nouns can be used for counting, as in 'several wines' or 'fewer cheeses' [Laycock]
     Full Idea: The very words we class as non-count nouns may themselves be used for counting, of kinds or types, and phrases like 'several wines' are perfectly in order. ...Not only do we have 'less cheese', but we also have the non-generic 'fewer cheeses'.
     From: Henry Laycock (Words without Objects [2006], Intro 4 n23)
     A reaction: [compressed] Laycock generally endorses the thought that what can be counted is not simply distinguished by a precise class of applied vocabulary. He offers lots of borderline or ambiguous cases in his footnotes.
Some apparent non-count words can take plural forms, such as 'snows' or 'waters' [Laycock]
     Full Idea: Some words that seem to be semantically non-count can take syntactically plural forms: 'snows', 'sands', 'waters' and the like.
     From: Henry Laycock (Words without Objects [2006], Intro 4 n24)
     A reaction: This seems to involve parcels of the stuff. The 'snows of yesteryear' occur at different times. 'Taking the waters' probably involves occasions. The 'Arabian sands' presumably occur in different areas. Semantics won't fix what is countable.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Two and one making three has the necessity of logical inference [Wittgenstein]
     Full Idea: "But doesn't it follow with logical necessity that you get two when you add one to one, and three when you add one to two? and isn't this inexorability the same as that of logical inference? - Yes! it is the same.
     From: Ludwig Wittgenstein (Remarks on the Foundations of Mathematics [1938], p.38), quoted by Robert Hanna - Rationality and Logic 6
     A reaction: This need not be a full commitment to logicism - only to the fact that the inferential procedures in mathematics are the same as those of logic. Mathematics could still have further non-logical ingredients. Indeed, I think it probably does.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
The category of stuff does not suit reference [Laycock]
     Full Idea: The central fact about the category of stuff or matter is that it is profoundly antithetical to reference.
     From: Henry Laycock (Words without Objects [2006], Pref)
     A reaction: This is taking 'reference' in the strictly singular classical sense, but clearly we refer to water in various ways. Laycock's challenge is very helpful. We have been in the grips of a terrible orthodoxy.
Descriptions of stuff are neither singular aggregates nor plural collections [Laycock]
     Full Idea: The definite descriptions of stuff like water are neither singular descriptions denoting individual mereological aggregates, nor plural descriptions denoting multitudes of discrete units or semantically determined atoms.
     From: Henry Laycock (Words without Objects [2006], 5.3)
     A reaction: Laycock makes an excellent case for this claim, and seems to invite a considerable rethink of our basic ontology to match it, one which he ultimately hints at calling 'romantic'. Nice. Conservatives try to force stuff into classical moulds.
7. Existence / C. Structure of Existence / 8. Stuff / b. Mixtures
We shouldn't think some water retains its identity when it is mixed with air [Laycock]
     Full Idea: Suppose that water, qua vapour, mixes with the atmosphere. Is there any abstract metaphysical principle, other than that of atomism, which implies that water must, in any such process, retain its identity? That claim seems indefensible.
     From: Henry Laycock (Words without Objects [2006], 1.2 n22)
     A reaction: It can't be right that some stuff always loses its identity in a mixture, if the mixture was in a closed vessel, and then separated again. Dispersion is what destroys the identity, not mixing.
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Parts must be of the same very general type as the wholes [Laycock]
     Full Idea: The notion of a part is such that parts must be of the same very general type - concrete, material or physical, for instance - as the wholes of which they are (said to be) parts.
     From: Henry Laycock (Words without Objects [2006], 2.9)
     A reaction: The phrase 'same very general type' cries out for investigation. Can an army contain someone who isn't much of a soldier? Can the Treasury contain a fear of inflation?
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
'Humility is a virtue' has an abstract noun, but 'water is a liquid' has a generic concrete noun [Laycock]
     Full Idea: Work is needed to distinguish abstract nouns ...from the generic uses of what are otherwise concrete nouns. The contrast is that of 'humility is a virtue' and 'water is a liquid'.
     From: Henry Laycock (Words without Objects [2006], Intro 4 n25)
     A reaction: 'Work is needed' implies 'let me through, I'm an analytic philosopher', but I don't think they will separate very easily. What does 'watery' mean? Does water have concrete virtues?
19. Language / B. Reference / 1. Reference theories
It is said that proper reference is our intellectual link with the world [Laycock]
     Full Idea: Some people hold that it is reference, in some more or less full-blooded sense, which constitutes our basic intellectual or psychological connection with the world.
     From: Henry Laycock (Words without Objects [2006], Pref)
     A reaction: This is the view which Laycock sets out to challenge, by showing that we talk about stuff like water without any singular reference occurring at all. I think he is probably right.