Combining Texts

All the ideas for 'Thinking About Mathematics', 'The Confessions' and 'Logic and Epistemology of Causal Relations'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
10. Modality / B. Possibility / 1. Possibility
What is true used to be possible, but it may no longer be so [Wright,GHv]
     Full Idea: It is not very natural to say of that which is true that it is also possible. ...What is true was possible - but whether it still is a potency of the world is not certain.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §5)
     A reaction: A simple and rather important distinction. Before encountering this, I would certainly have been happy to affirm that the actual is possible, but actually it may not be. The power to create differs from the power to sustain. Could God re-create the world?
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
24. Political Theory / D. Ideologies / 9. Communism
The nature of people is decided by the government and politics of their society [Rousseau]
     Full Idea: Everything is rooted in politics, and whatever might be attempted, no people would ever be other than the nature of their government made them.
     From: Jean-Jacques Rousseau (The Confessions [1770], 9-1756)
     A reaction: A striking anticipation of one of Marx's most important ideas - that society is not created by individual minds, because the nature of consciousness is created by society. The central idea in the subject of sociology, I think.
26. Natural Theory / C. Causation / 5. Direction of causation
p is a cause and q an effect (not vice versa) if manipulations of p change q [Wright,GHv]
     Full Idea: What makes p a cause-factor relative to the effect-factor q (rather than vice versa) is the fact that by manipulating p, producing changes in it 'at will', we could bring about changes in q.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §8)
     A reaction: As a solution to the direction-of-causation problem, I suspect that this proposal is begging the question. Will a causal explanation be offered of the action of manipulation? If he mistook his manipulation for a cause when it is actually an effect...
We can imagine controlling floods by controlling rain, but not vice versa [Wright,GHv]
     Full Idea: Given our present knowledge of the laws of nature, we can imagine ways of controlling floods by controlling rainfall, but not the other way round. That is should be so, however, is contingent.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §8)
     A reaction: Despite my objections to Idea 8363, this is a good example. It won't establish the metaphysics of the direction of causation, though, because God might control rainfall by controlling floods. Maybe causation is more like a motorway pile-up than dominoes.
26. Natural Theory / C. Causation / 8. Particular Causation / a. Observation of causation
The very notion of a cause depends on agency and action [Wright,GHv]
     Full Idea: There is an implicit dependence of the very notion of a cause on a concept of agency and action.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §10)
     A reaction: This is because he thinks experimental intervention is the key to the concept of causation (see Ideas 8362 and 8363). Others go further, and say that the concept of causation arises from subjective experience of performing actions. I quite like that.
We give regularities a causal character by subjecting them to experiment [Wright,GHv]
     Full Idea: What confers on observed regularities the character of causal or nomic connections is the possibility of subjecting cause-factors to experimental test by interfering with the 'natural' course of events.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §7)
     A reaction: This is von Wright's distinctive proposal, making causation a feature of the culture of science, rather than of ordinary life. But see Idea 2461. Causation is becoming too epistemological for my taste. Either it is a feature of reality, or forget it.
26. Natural Theory / C. Causation / 8. Particular Causation / c. Conditions of causation
We must further analyse conditions for causation, into quantifiers or modal concepts [Wright,GHv]
     Full Idea: We may be able to analyse causation into conditionship relations between events or states of affairs, ...but conditions cannot be regarded as logical primitives, ... and must be analysed into quantifiers, or modal concepts.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §2)
     A reaction: [very compressed] A nice illustration of the aim of analytical philosophy - to analyse the elements of reality down to logical primitives. This is the dream of Descartes and Leibniz, continued by Russell and co. Do we still have this aspiration?
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Some laws are causal (Ohm's Law), but others are conceptual principles (conservation of energy) [Wright,GHv]
     Full Idea: Not all laws are causal 'experimentalist' laws, such as those for falling bodies, or the Gas Law, or Ohm's Law. Some are more like conceptual principles, giving a frame of reference, such as inertia, or conservation of energy, or the law of entropy.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §9)
     A reaction: An interesting and important distinction, whenever one is exploring the links between theories of causation and of laws of nature. If one wished to attack the whole concept of 'laws of nature', this might be a good place to start.