Combining Texts

All the ideas for 'Thinking About Mathematics', 'Truth is not the Primary Epistemic Goal' and 'fragments/reports'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
10. Modality / A. Necessity / 10. Impossibility
From the necessity of the past we can infer the impossibility of what never happens [Diod.Cronus, by White,MJ]
     Full Idea: Diodorus' Master Argument inferred that since what is past (i.e. true in the past) is necessary, and the impossible cannot follow from the possible, that therefore if something neither is nor ever will be the case, then it is impossible.
     From: report of Diodorus Cronus (fragments/reports [c.300 BCE]) by Michael J. White - Diodorus Cronus
     A reaction: The argument is, apparently, no longer fully clear, but it seems to imply determinism, or at least a rejection of the idea that free will and determinism are compatible. (Epictetus 2.19)
10. Modality / B. Possibility / 1. Possibility
The Master Argument seems to prove that only what will happen is possible [Diod.Cronus, by Epictetus]
     Full Idea: The Master Argument: these conflict 1) what is past and true is necessary, 2) the impossible does not follow from the possible, 3) something possible neither is nor will be true. Hence only that which is or will be true is possible.
     From: report of Diodorus Cronus (fragments/reports [c.300 BCE]) by Epictetus - The Discourses 2.19.1
     A reaction: [Epictetus goes on to discuss views about which of the three should be given up] It is possible there will be a sea fight tomorrow; tomorrow comes, and no sea fight; so there was necessarily no sea fight; so the impossible followed from the possible.
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
Conditionals are true when the antecedent is true, and the consequent has to be true [Diod.Cronus]
     Full Idea: The connected (proposition) is true when it begins with true and neither could nor can end with false.
     From: Diodorus Cronus (fragments/reports [c.300 BCE]), quoted by Stephen Mumford - Dispositions 03.4
     A reaction: [Mumford got the quote from Bochenski] This differs from the truth-functional account because it says nothing about when the antecedent is false, which fits in also with the 'supposition' view, where A is presumed. This idea adds necessity.
11. Knowledge Aims / A. Knowledge / 1. Knowledge
Epistemology does not just concern knowledge; all aspects of cognitive activity are involved [Kvanvig]
     Full Idea: Epistemology is not just knowledge. There is enquiring, reasoning, changes of view, beliefs, assumptions, presuppositions, hypotheses, true beliefs, making sense, adequacy, understanding, wisdom, responsible enquiry, and so on.
     From: Jonathan Kvanvig (Truth is not the Primary Epistemic Goal [2005], 'What')
     A reaction: [abridged] Stop! I give in. His topic is whether truth is central to epistemology. Rivals seem to be knowledge-first, belief-first, and justification-first. I'm inclined to take justification as the central issue. Does it matter?
11. Knowledge Aims / A. Knowledge / 5. Aiming at Truth
Making sense of things, or finding a good theory, are non-truth-related cognitive successes [Kvanvig]
     Full Idea: There are cognitive successes that are not obviously truth related, such as the concepts of making sense of the course of experience, and having found an empirically adequate theory.
     From: Jonathan Kvanvig (Truth is not the Primary Epistemic Goal [2005], 'Epistemic')
     A reaction: He is claiming that truth is not the main aim of epistemology. He quotes Marian David for the rival view. Personally I doubt whether the concepts of 'making sense' or 'empirical adequacy' can be explicated without mentioning truth.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
The 'defeasibility' approach says true justified belief is knowledge if no undermining facts could be known [Kvanvig]
     Full Idea: The 'defeasibility' approach says that having knowledge requires, in addition to justified true belief, there being no true information which, if learned, would result in the person in question no longer being justified in believing the claim.
     From: Jonathan Kvanvig (Truth is not the Primary Epistemic Goal [2005], 'Epistemic')
     A reaction: I take this to be an externalist view, since it depends on information of which the cognizer may be unaware. A defeater may yet have an undiscovered counter-defeater. The only real defeater is the falsehood of the proposition.
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / b. Anti-reliabilism
Reliabilism cannot assess the justification for propositions we don't believe [Kvanvig]
     Full Idea: The most serious problem for reliabilism is that it cannot explain adequately the concept of propositional justification, the kind of justification one might have for a proposition one does not believe, or which one disbelieves.
     From: Jonathan Kvanvig (Truth is not the Primary Epistemic Goal [2005], Notes 2)
     A reaction: I don't understand this (though I pass it on anyway). Why can't the reliabilist just offer a critique of the reliability of the justification available for the dubious proposition?
19. Language / D. Propositions / 4. Mental Propositions
Thought is unambiguous, and you should stick to what the speaker thinks they are saying [Diod.Cronus, by Gellius]
     Full Idea: No one says or thinks anything ambiguous, and nothing should be held to be being said beyond what the speaker thinks he is saying.
     From: report of Diodorus Cronus (fragments/reports [c.300 BCE]) by Aulus Gellius - Noctes Atticae 11.12.2
     A reaction: A key argument in favour of propositions, implied in this remark, is that propositions are never ambiguous, though the sentences expressing them may be