Combining Texts

All the ideas for 'Thinking About Mathematics', 'Introduction to the Theory of Logic' and 'Tarski's Theory of Truth'

unexpand these ideas     |    start again     |     specify just one area for these texts


42 ideas

3. Truth / A. Truth Problems / 4. Uses of Truth
The notion of truth is to help us make use of the utterances of others [Field,H]
     Full Idea: I suspect that the original purpose of the notion of truth was to aid us in utilizing the utterances of others in drawing conclusions about the world,...so we must attend to its social role, and that being in a position to assert something is what counts.
     From: Hartry Field (Tarski's Theory of Truth [1972], §5)
     A reaction: [Last bit compressed] This sounds excellent. Deflationary and redundancy views are based on a highly individualistic view of utterances and truth, but we need to be much more contextual and pragmatic if we are to get the right story.
3. Truth / A. Truth Problems / 9. Rejecting Truth
In the early 1930s many philosophers thought truth was not scientific [Field,H]
     Full Idea: In the early 1930s many philosophers believed that the notion of truth could not be incorporated into a scientific conception of the world.
     From: Hartry Field (Tarski's Theory of Truth [1972], §3)
     A reaction: This leads on to an account of why Tarski's formal version was so important, and Field emphasises Tarski's physicalist metaphysic.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarski reduced truth to reference or denotation [Field,H, by Hart,WD]
     Full Idea: Tarski can be viewed as having reduced truth to reference or denotation.
     From: report of Hartry Field (Tarski's Theory of Truth [1972]) by William D. Hart - The Evolution of Logic 4
Tarski really explained truth in terms of denoting, predicating and satisfied functions [Field,H]
     Full Idea: A proper account of Tarski's truth definition explains truth in terms of three other semantic notions: what it is for a name to denote something, and for a predicate to apply to something, and for a function symbol to be fulfilled by a pair of things.
     From: Hartry Field (Tarski's Theory of Truth [1972])
     A reaction: This is Field's 'T1' version, which is meant to spell out what was really going on in Tarski's account.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Tarski just reduced truth to some other undefined semantic notions [Field,H]
     Full Idea: It is normally claimed that Tarski defined truth using no undefined semantic terms, but I argue that he reduced the notion of truth to certain other semantic notions, but did not in any way explicate these other notions.
     From: Hartry Field (Tarski's Theory of Truth [1972], §0)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Sets can be defined by 'enumeration', or by 'abstraction' (based on a property) [Zalabardo]
     Full Idea: We can define a set by 'enumeration' (by listing the items, within curly brackets), or by 'abstraction' (by specifying the elements as instances of a property), pretending that they form a determinate totality. The latter is written {x | x is P}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'Cartesian Product' of two sets relates them by pairing every element with every element [Zalabardo]
     Full Idea: The 'Cartesian Product' of two sets, written A x B, is the relation which pairs every element of A with every element of B. So A x B = { | x ∈ A and y ∈ B}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
A 'partial ordering' is reflexive, antisymmetric and transitive [Zalabardo]
     Full Idea: A binary relation in a set is a 'partial ordering' just in case it is reflexive, antisymmetric and transitive.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Determinacy: an object is either in a set, or it isn't [Zalabardo]
     Full Idea: Principle of Determinacy: For every object a and every set S, either a is an element of S or a is not an element of S.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: Determinate totals of objects always make a set [Zalabardo]
     Full Idea: Principle of Specification: Whenever we can specify a determinate totality of objects, we shall say that there is a set whose elements are precisely the objects that we have specified.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
     A reaction: Compare the Axiom of Specification. Zalabardo says we may wish to consider sets of which we cannot specify the members.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
A first-order 'sentence' is a formula with no free variables [Zalabardo]
     Full Idea: A formula of a first-order language is a 'sentence' just in case it has no free variables.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.2)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ |= φ for sentences if φ is true when all of Γ is true [Zalabardo]
     Full Idea: A propositional logic sentence is a 'logical consequence' of a set of sentences (written Γ |= φ) if for every admissible truth-assignment all the sentences in the set Γ are true, then φ is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: The definition is similar for predicate logic.
Γ |= φ if φ is true when all of Γ is true, for all structures and interpretations [Zalabardo]
     Full Idea: A formula is the 'logical consequence' of a set of formulas (Γ |= φ) if for every structure in the language and every variable interpretation of the structure, if all the formulas within the set are true and the formula itself is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
Propositional logic just needs ¬, and one of ∧, ∨ and → [Zalabardo]
     Full Idea: In propositional logic, any set containing ¬ and at least one of ∧, ∨ and → is expressively complete.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.8)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
The semantics shows how truth values depend on instantiations of properties and relations [Zalabardo]
     Full Idea: The semantic pattern of a first-order language is the ways in which truth values depend on which individuals instantiate the properties and relations which figure in them. ..So we pair a truth value with each combination of individuals, sets etc.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.3)
     A reaction: So truth reduces to a combination of 'instantiations', which is rather like 'satisfaction'.
We can do semantics by looking at given propositions, or by building new ones [Zalabardo]
     Full Idea: We can look at semantics from the point of view of how truth values are determined by instantiations of properties and relations, or by asking how we can build, using the resources of the language, a proposition corresponding to a given semantic pattern.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
     A reaction: The second version of semantics is model theory.
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
Tarski gives us the account of truth needed to build a group of true sentences in a model [Field,H]
     Full Idea: Model theory must choose the denotations of the primitives so that all of a group of sentences come out true, so we need a theory of how the truth value of a sentence depends on the denotation of its primitive nonlogical parts, which Tarski gives us.
     From: Hartry Field (Tarski's Theory of Truth [1972], §1)
We make a truth assignment to T and F, which may be true and false, but merely differ from one another [Zalabardo]
     Full Idea: A truth assignment is a function from propositions to the set {T,F}. We will think of T and F as the truth values true and false, but for our purposes all we need to assume about the identity of these objects is that they are different from each other.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: Note that T and F are 'objects'. This remark is important in understanding modern logical semantics. T and F can be equated to 1 and 0 in the language of a computer. They just mean as much as you want them to mean.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logically true sentences are true in all structures [Zalabardo]
     Full Idea: In first-order languages, logically true sentences are true in all structures.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
'Logically true' (|= φ) is true for every truth-assignment [Zalabardo]
     Full Idea: A propositional logic sentence is 'logically true', written |= φ, if it is true for every admissible truth-assignment.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Some formulas are 'satisfiable' if there is a structure and interpretation that makes them true [Zalabardo]
     Full Idea: A set of formulas of a first-order language is 'satisfiable' if there is a structure and a variable interpretation in that structure such that all the formulas of the set are true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
A sentence-set is 'satisfiable' if at least one truth-assignment makes them all true [Zalabardo]
     Full Idea: A propositional logic set of sentences Γ is 'satisfiable' if there is at least one admissible truth-assignment that makes all of its sentences true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory is unusual in restricting the range of the quantifiers [Field,H]
     Full Idea: In model theory we are interested in allowing a slightly unusual semantics for quantifiers: we are willing to allow that the quantifier not range over everything.
     From: Hartry Field (Tarski's Theory of Truth [1972], n 5)
A structure models a sentence if it is true in the model, and a set of sentences if they are all true in the model [Zalabardo]
     Full Idea: A structure is a model of a sentence if the sentence is true in the model; a structure is a model of a set of sentences if they are all true in the structure.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
If a set is defined by induction, then proof by induction can be applied to it [Zalabardo]
     Full Idea: Defining a set by induction enables us to use the method of proof by induction to establish that all the elements of the set have a certain property.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.3)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
'Valence' and 'gene' had to be reduced to show their compatibility with physicalism [Field,H]
     Full Idea: 'Valence' and 'gene' were perfectly clear long before anyone succeeded in reducing them, but it was their reducibility and not their clarity before reduction that showed them to be compatible with physicalism.
     From: Hartry Field (Tarski's Theory of Truth [1972], §5)
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Field says reference is a causal physical relation between mental states and objects [Field,H, by Putnam]
     Full Idea: In Field's view reference is a 'physicalistic relation', i.e. a complex causal relation between words or mental representations and objects or sets of objects; it is up to physical science to discover what that physicalistic relation is.
     From: report of Hartry Field (Tarski's Theory of Truth [1972]) by Hilary Putnam - Reason, Truth and History Ch.2
     A reaction: I wouldn't hold your breath while the scientists do their job. If physicalism is right then Field is right, but physics seems no more appropriate for giving a theory of reference than it does for giving a theory of music.