Combining Texts

All the ideas for 'Thinking About Mathematics', 'Introduction to the Theory of Logic' and 'Modality'

unexpand these ideas     |    start again     |     specify just one area for these texts


50 ideas

2. Reason / A. Nature of Reason / 1. On Reason
Consistency is modal, saying propositions are consistent if they could be true together [Melia]
     Full Idea: Consistency is a modal notion: a set of propositions is consistent iff all the members of the set could be true together.
     From: Joseph Melia (Modality [2003], Ch.6)
     A reaction: This shows why Kantian ethics, for example, needs a metaphysical underpinning. Maybe Kant should have believed in the reality of Leibnizian possible worlds? An account of reason requires an account of necessity and possibility.
4. Formal Logic / C. Predicate Calculus PC / 1. Predicate Calculus PC
Predicate logic has connectives, quantifiers, variables, predicates, equality, names and brackets [Melia]
     Full Idea: First-order predicate language has four connectives, two quantifiers, variables, predicates, equality, names, and brackets.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: Look up the reference for the details! The spirit of logic is seen in this basic framework, and the main interest is in the ontological commitment of the items on the list. The list is either known a priori, or it is merely conventional.
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
First-order predicate calculus is extensional logic, but quantified modal logic is intensional (hence dubious) [Melia]
     Full Idea: First-order predicate calculus is an extensional logic, while quantified modal logic is intensional (which has grave problems of interpretation, according to Quine).
     From: Joseph Melia (Modality [2003], Ch.3)
     A reaction: The battle is over ontology. Quine wants the ontology to stick with the values of the variables (i.e. the items in the real world that are quantified over in the extension). The rival view arises from attempts to explain necessity and counterfactuals.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Sets can be defined by 'enumeration', or by 'abstraction' (based on a property) [Zalabardo]
     Full Idea: We can define a set by 'enumeration' (by listing the items, within curly brackets), or by 'abstraction' (by specifying the elements as instances of a property), pretending that they form a determinate totality. The latter is written {x | x is P}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'Cartesian Product' of two sets relates them by pairing every element with every element [Zalabardo]
     Full Idea: The 'Cartesian Product' of two sets, written A x B, is the relation which pairs every element of A with every element of B. So A x B = { | x ∈ A and y ∈ B}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
A 'partial ordering' is reflexive, antisymmetric and transitive [Zalabardo]
     Full Idea: A binary relation in a set is a 'partial ordering' just in case it is reflexive, antisymmetric and transitive.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Determinacy: an object is either in a set, or it isn't [Zalabardo]
     Full Idea: Principle of Determinacy: For every object a and every set S, either a is an element of S or a is not an element of S.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: Determinate totals of objects always make a set [Zalabardo]
     Full Idea: Principle of Specification: Whenever we can specify a determinate totality of objects, we shall say that there is a set whose elements are precisely the objects that we have specified.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
     A reaction: Compare the Axiom of Specification. Zalabardo says we may wish to consider sets of which we cannot specify the members.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
A first-order 'sentence' is a formula with no free variables [Zalabardo]
     Full Idea: A formula of a first-order language is a 'sentence' just in case it has no free variables.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.2)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ |= φ for sentences if φ is true when all of Γ is true [Zalabardo]
     Full Idea: A propositional logic sentence is a 'logical consequence' of a set of sentences (written Γ |= φ) if for every admissible truth-assignment all the sentences in the set Γ are true, then φ is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: The definition is similar for predicate logic.
Γ |= φ if φ is true when all of Γ is true, for all structures and interpretations [Zalabardo]
     Full Idea: A formula is the 'logical consequence' of a set of formulas (Γ |= φ) if for every structure in the language and every variable interpretation of the structure, if all the formulas within the set are true and the formula itself is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
Propositional logic just needs ¬, and one of ∧, ∨ and → [Zalabardo]
     Full Idea: In propositional logic, any set containing ¬ and at least one of ∧, ∨ and → is expressively complete.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.8)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order logic needs second-order variables and quantification into predicate position [Melia]
     Full Idea: Permitting quantification into predicate position and adding second-order variables leads to second-order logic.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: Often expressed by saying that we now quantify over predicates and relations, rather than just objects. Depends on your metaphysical commitments.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
The semantics shows how truth values depend on instantiations of properties and relations [Zalabardo]
     Full Idea: The semantic pattern of a first-order language is the ways in which truth values depend on which individuals instantiate the properties and relations which figure in them. ..So we pair a truth value with each combination of individuals, sets etc.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.3)
     A reaction: So truth reduces to a combination of 'instantiations', which is rather like 'satisfaction'.
We can do semantics by looking at given propositions, or by building new ones [Zalabardo]
     Full Idea: We can look at semantics from the point of view of how truth values are determined by instantiations of properties and relations, or by asking how we can build, using the resources of the language, a proposition corresponding to a given semantic pattern.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
     A reaction: The second version of semantics is model theory.
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
We make a truth assignment to T and F, which may be true and false, but merely differ from one another [Zalabardo]
     Full Idea: A truth assignment is a function from propositions to the set {T,F}. We will think of T and F as the truth values true and false, but for our purposes all we need to assume about the identity of these objects is that they are different from each other.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: Note that T and F are 'objects'. This remark is important in understanding modern logical semantics. T and F can be equated to 1 and 0 in the language of a computer. They just mean as much as you want them to mean.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Logically true' (|= φ) is true for every truth-assignment [Zalabardo]
     Full Idea: A propositional logic sentence is 'logically true', written |= φ, if it is true for every admissible truth-assignment.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
Logically true sentences are true in all structures [Zalabardo]
     Full Idea: In first-order languages, logically true sentences are true in all structures.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence-set is 'satisfiable' if at least one truth-assignment makes them all true [Zalabardo]
     Full Idea: A propositional logic set of sentences Γ is 'satisfiable' if there is at least one admissible truth-assignment that makes all of its sentences true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
Some formulas are 'satisfiable' if there is a structure and interpretation that makes them true [Zalabardo]
     Full Idea: A set of formulas of a first-order language is 'satisfiable' if there is a structure and a variable interpretation in that structure such that all the formulas of the set are true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure models a sentence if it is true in the model, and a set of sentences if they are all true in the model [Zalabardo]
     Full Idea: A structure is a model of a sentence if the sentence is true in the model; a structure is a model of a set of sentences if they are all true in the structure.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
If every model that makes premises true also makes conclusion true, the argument is valid [Melia]
     Full Idea: In first-order predicate calculus validity is defined thus: an argument is valid iff every model that makes the premises of the argument true also makes the conclusion of the argument true.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: See Melia Ch. 2 for an explanation of a 'model'. Traditional views of validity tend to say that if the premises are true the conclusion has to be true (necessarily), but this introduces the modal term 'necessarily', which is controversial.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
If a set is defined by induction, then proof by induction can be applied to it [Zalabardo]
     Full Idea: Defining a set by induction enables us to use the method of proof by induction to establish that all the elements of the set have a certain property.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.3)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
No sort of plain language or levels of logic can express modal facts properly [Melia]
     Full Idea: Some philosophers say that modal facts cannot be expressed either by name/predicate language, or by first-order predicate calculus, or even by second-order logic.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: If 'possible' were a predicate, none of this paraphernalia would be needed. If possible worlds are accepted, then the quantifiers of first-order predicate calculus will do the job. If neither of these will do, there seems to be a problem.
Maybe names and predicates can capture any fact [Melia]
     Full Idea: Some philosophers think that any fact can be captured in a language containing only names and predicates.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: The problem case Melia is discussing is modal facts, such as 'x is possible'. It is hard to see how 'possible' could be an ordinary predicate, but then McGinn claims that 'existence' is, and that there are some predicates with unusual characters.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Identity of Indiscernibles is contentious for qualities, and trivial for non-qualities [Melia]
     Full Idea: If the Identity of Indiscernibles is referring to qualitative properties, such as 'being red' or 'having mass', it is contentious; if it is referring to non-qualitative properties, such as 'member of set s' or 'brother of a', it is true but trivial.
     From: Joseph Melia (Modality [2003], Ch.3 n 11)
     A reaction: I would say 'false' rather than 'contentious'. No one has ever offered a way of distinguishing two electrons, but that doesn't mean there is just one (very busy) electron. The problem is that 'indiscernible' is only an epistemological concept.
10. Modality / A. Necessity / 2. Nature of Necessity
We may be sure that P is necessary, but is it necessarily necessary? [Melia]
     Full Idea: We may have fairly firm beliefs as to whether or not P is necessary, but many of us find ourselves at a complete loss when wondering whether or not P is necessarily necessary.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: I think it is questions like this which are pushing philosophy back towards some sort of rationalism. See Idea 3651, for example. A regress of necessities would be mad, so necessity must be taken as self-evident (in itself, though maybe not to us).
10. Modality / A. Necessity / 4. De re / De dicto modality
'De re' modality is about things themselves, 'de dicto' modality is about propositions [Melia]
     Full Idea: In cases of 'de re' modality, it is a particular thing that has the property essentially or accidentally; where the modality attaches to the proposition, it is 'de dicto' - it is the whole truth that all bachelors are unmarried that is necessary.
     From: Joseph Melia (Modality [2003], Ch.1)
     A reaction: This seems to me one of the most important distinctions in metaphysics (as practised by analytical philosophers, who like distinctions). The first type leads off into the ontology, the second type veers towards epistemology.
10. Modality / B. Possibility / 1. Possibility
Sometimes we want to specify in what ways a thing is possible [Melia]
     Full Idea: Sometimes we want to count the ways in which something is possible, or say that there are many ways in which a certain thing is possible.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: This is a basic fact about talk of 'possibility'. It is not an all-or-nothing property of a situation. There can be 'faint' possibilities of things. The proximity of some possible worlds, especially those sharing our natural laws, is one answer.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Possible worlds make it possible to define necessity and counterfactuals without new primitives [Melia]
     Full Idea: In modal logic the concepts of necessity and counterfactuals are not interdefinable, so the language needs two primitives to represent them, but with the machinery of possible worlds they are defined by what is the case in all worlds, or close worlds.
     From: Joseph Melia (Modality [2003], Ch.1)
     A reaction: If your motivation is to reduce ontology to the barest of minimums (which it was for David Lewis) then it is paradoxical that the existence of possible worlds may be the way to achieve it. I doubt, though, whether a commitment to their reality is needed.
In possible worlds semantics the modal operators are treated as quantifiers [Melia]
     Full Idea: The central idea in possible worlds semantics is that the modal operators are treated as quantifiers.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: It seems an essential requirement of metaphysics that an account be given of possibility and necessity, and it is also a good dream to keep the ontology simple. Commitment to possible worlds is the bizarre outcome of this dream.
If possible worlds semantics is not realist about possible worlds, logic becomes merely formal [Melia]
     Full Idea: It has proved difficult to justify possible worlds semantics without accepting possible worlds. Without a secure metaphysical underpinning, the results in logic are in danger of having nothing more than a formal significance.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: This makes nicely clear why Lewis's controversial modal realism has to be taken seriously. It appears that the key problem is truth, because that is needed to define validity, but you can't have truth without some sort of metaphysics.
Possible worlds could be real as mathematics, propositions, properties, or like books [Melia]
     Full Idea: One can be a realist about possible worlds without adopting Lewis's extreme views; they might be abstract or mathematical entities; they might be sets of propositions or maximal uninstantiated properties; they might be like books or pictures.
     From: Joseph Melia (Modality [2003], Ch.6)
     A reaction: My intuition is that once you go down the road of realism about possible worlds, Lewis's full concrete realism looks at least as attractive as any of these options. You can discuss the 'average man' in an economic theory without realism.
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / b. Worlds as fictions
The truth of propositions at possible worlds are implied by the world, just as in books [Melia]
     Full Idea: Propositions are true at possible worlds in much the same way as they are true at books: by being implied by the book.
     From: Joseph Melia (Modality [2003], Ch.7)
     A reaction: An intriguing way to introduce the view that possible worlds should be seen as like books. The truth-makers of propositions about the actual world are items in it, but the truth-makers in novels (say) are the conditions of the whole work as united.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
We accept unverifiable propositions because of simplicity, utility, explanation and plausibility [Melia]
     Full Idea: Many philosophers now concede that it is rational to accept a proposition not because we can directly verify it but because it is supported by considerations of simplicity, theoretical utility, explanatory power and/or intuitive plausibility.
     From: Joseph Melia (Modality [2003], Ch.5)
     A reaction: This suggests how the weakness of logical positivism may have led us to the concept of epistemic virtues (such as those listed), which are, of course, largely a matter of community consensus, just as the moral virtues are.