Combining Texts

All the ideas for 'Thinking About Mathematics', 'The Question of Ontology' and 'A Puzzle about Belief'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The existence of numbers is not a matter of identities, but of constituents of the world [Fine,K]
     Full Idea: On saying that a particular number exists, we are not saying that there is something identical to it, but saying something about its status as a genuine constituent of the world.
     From: Kit Fine (The Question of Ontology [2009], p.168)
     A reaction: This is aimed at Frege's criterion of identity, which is to be an element in an identity relation, such as x = y. Fine suggests that this only gives a 'trivial' notion of existence, when he is interested in a 'thick' sense of 'exists'.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
It is plausible that x^2 = -1 had no solutions before complex numbers were 'introduced' [Fine,K]
     Full Idea: It is not implausible that before the 'introduction' of complex numbers, it would have been incorrect for mathematicians to claim that there was a solution to the equation 'x^2 = -1' under a completely unrestricted understanding of 'there are'.
     From: Kit Fine (The Question of Ontology [2009])
     A reaction: I have adopted this as the crucial test question for anyone's attitude to platonism in mathematics. I take it as obvious that complex numbers were simply invented so that such equations could be dealt with. They weren't 'discovered'!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
The indispensability argument shows that nature is non-numerical, not the denial of numbers [Fine,K]
     Full Idea: Arguments such as the dispensability argument are attempting to show something about the essentially non-numerical character of physical reality, rather than something about the nature or non-existence of the numbers themselves.
     From: Kit Fine (The Question of Ontology [2009], p.160)
     A reaction: This is aimed at Hartry Field. If Quine was right, and we only believe in numbers because of our science, and then Field shows our science doesn't need it, then Fine would be wrong. Quine must be wrong, as well as Field.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / A. Nature of Existence / 1. Nature of Existence
'Exists' is a predicate, not a quantifier; 'electrons exist' is like 'electrons spin' [Fine,K]
     Full Idea: The most natural reading of 'electrons exist' is that there are electrons while, on our view, the proper reading should be modeled on 'electrons spin', meaning every electron spins. 'Exists' should be treated as a predicate rather than a quantifier.
     From: Kit Fine (The Question of Ontology [2009], p.167)
     A reaction: So existence IS a predicate (message to Kant). Dunno. Electrons have to exist in order to spin, but they don't have to exist in order to exist. But they don't have to exist to be 'dead'.
7. Existence / A. Nature of Existence / 4. Abstract Existence
Just as we introduced complex numbers, so we introduced sums and temporal parts [Fine,K]
     Full Idea: Just as one can extend the domain of discourse to include solutions to the equation 'x^2=-1' so one can extend the domain of discourse to include objects that satisfy the condition 'x is the sum of the G's' or 'x is a temporal part of the object b at t'.
     From: Kit Fine (The Question of Ontology [2009], p.164)
     A reaction: This thought lies behind Fine's 'Proceduralism'. I take it that our collection of abstracta consists entirely of items we have either deliberately or unthinkingly 'introduced' into our discourse when they seemed useful. They then submit to certain laws.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
Real objects are those which figure in the facts that constitute reality [Fine,K]
     Full Idea: The real objects are the objects of reality, those that figure in the facts by which reality is constituted.
     From: Kit Fine (The Question of Ontology [2009], p.172)
     A reaction: And these need to be facts over and above the basic facts. Thus, does the 'equator' constitute reality, over and above the Earth being a rotating sphere? Does 'six' constitute reality, over and above all the possible groups of six objects?
Being real and being fundamental are separate; Thales's water might be real and divisible [Fine,K]
     Full Idea: Being the case in reality and being fundamental are not sufficient for one another. If one agrees with Thales that the world is composed of water, and with Aristotle that water is indefinitely divisible, then water would be real but not fundamental.
     From: Kit Fine (The Question of Ontology [2009], p.174)
     A reaction: Presumably the divisibility would make a reductionist account of water possible. The Atlantic Ocean is real, but water molecules would have a more prominent place in the ontology of any good metaphysician.
7. Existence / D. Theories of Reality / 1. Ontologies
For ontology we need, not internal or external views, but a view from outside reality [Fine,K]
     Full Idea: We need to straddle both of Carnap's internal and external views. It is only by standing outside of reality that we are able to occupy a standpoint from which the constitution of reality can be adequately described.
     From: Kit Fine (The Question of Ontology [2009], p.174)
     A reaction: See Idea 4840! I thoroughly approve of this idea, which almost amounts to a Credo for the modern metaphysician. Since we can think outside our room, or our country, or our era, or our solar system, I think we can do what Fine is demanding.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Ontological claims are often universal, and not a matter of existential quantification [Fine,K]
     Full Idea: I suggest we give up on the account of ontological claims in terms of existential quantification. The commitment to the integers is not an existential but a universal commitment, to each of the integers, not to some integer or other.
     From: Kit Fine (The Question of Ontology [2009], p.167)
     A reaction: In classical logic it is only the existential quantifier which requires the domain to be populated, so Fine is more or less giving up on classical logic as a tool for doing ontology (apparently?).
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
18. Thought / B. Mechanics of Thought / 5. Mental Files
Puzzled Pierre has two mental files about the same object [Recanati on Kripke]
     Full Idea: In Kripke's puzzle about belief, the subject has two distinct mental files about one and the same object.
     From: comment on Saul A. Kripke (A Puzzle about Belief [1979]) by François Recanati - Mental Files 17.1
     A reaction: [Pierre distinguishes 'London' from 'Londres'] The Kripkean puzzle is presented as very deep, but I have always felt there was a simple explanation, and I suspect that this is it (though I will leave the reader to think it through, as I'm very busy…).