Combining Texts

All the ideas for 'Philosophy of Mathematics', 'First-Order Modal Logic' and 'Logicism in the 21st Century'

unexpand these ideas     |    start again     |     specify just one area for these texts


113 ideas

2. Reason / A. Nature of Reason / 6. Coherence
Coherence is a primitive, intuitive notion, not reduced to something formal [Shapiro]
     Full Idea: I take 'coherence' to be a primitive, intuitive notion, not reduced to something formal, and so I do not venture a rigorous definition of it.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: I agree strongly with this. Best to talk of 'the space of reasons', or some such. Rationality extends far beyond what can be formally defined. Coherence is the last court of appeal in rational thought.
2. Reason / D. Definition / 7. Contextual Definition
An 'implicit definition' gives a direct description of the relations of an entity [Shapiro]
     Full Idea: An 'implicit definition' characterizes a structure or class of structures by giving a direct description of the relations that hold among the places of the structure.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], Intro)
     A reaction: This might also be thought of as a 'functional definition', since it seems to say what the structure or entity does, rather than give the intrinsic characteristics that make its relations and actions possible.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal operators are usually treated as quantifiers [Shapiro]
     Full Idea: It is common now, and throughout the history of philosophy, to interpret modal operators as quantifiers. This is an analysis of modality in terms of ontology.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], Intro)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Axiom of Choice: some function has a value for every set in a given set [Shapiro]
     Full Idea: One version of the Axiom of Choice says that for every set A of nonempty sets, there is a function whose domain is A and whose value, for every a ∈ A, is a member of a.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 1)
The Axiom of Choice seems to license an infinite amount of choosing [Shapiro]
     Full Idea: If the Axiom of Choice says we can choose one member from each of a set of non-empty sets and put the chosen elements together in a set, this licenses the constructor to do an infinite amount of choosing.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.3)
     A reaction: This is one reason why the Axiom was originally controversial, and still is for many philosophers.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Anti-realists reject set theory [Shapiro]
     Full Idea: Anti-realists reject set theory.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], Intro)
     A reaction: That is, anti-realists about mathematical objects. I would have thought that one could accept an account of sets as (say) fictions, which provided interesting models of mathematics etc.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
The two standard explanations of consequence are semantic (in models) and deductive [Shapiro]
     Full Idea: The two best historical explanations of consequence are the semantic (model-theoretic), and the deductive versions.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 7.2)
     A reaction: Shapiro points out the fictionalists are in trouble here, because the first involves commitment to sets, and the second to the existence of deductions.
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Intuitionism only sanctions modus ponens if all three components are proved [Shapiro]
     Full Idea: In some intuitionist semantics modus ponens is not sanctioned. At any given time there is likely to be a conditional such that it and its antecedent have been proved, but nobody has bothered to prove the consequent.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.7)
     A reaction: [He cites Heyting] This is a bit baffling. In what sense can 'it' (i.e. the conditional implication) have been 'proved' if the consequent doesn't immediately follow? Proving both propositions seems to make the conditional redundant.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Either logic determines objects, or objects determine logic, or they are separate [Shapiro]
     Full Idea: Ontology does not depend on language and logic if either one has the objects determining the logic, or the objects are independent of the logic.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.4)
     A reaction: I favour the first option. I think we should seek an account of how logic grows from our understanding of the physical world. If this cannot be established, I shall invent a new Mad Logic, and use it for all my future reasoning, with (I trust) impunity.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle might be seen as a principle of omniscience [Shapiro]
     Full Idea: The law of excluded middle might be seen as a principle of omniscience.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.3)
     A reaction: [E.Bishop 1967 is cited] Put that way, you can see why a lot of people (such as intuitionists in mathematics) might begin to doubt it.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Classical connectives differ from their ordinary language counterparts; '∧' is timeless, unlike 'and' [Shapiro]
     Full Idea: To some extent, every truth-functional connective differs from its counterpart in ordinary language. Classical conjunction, for example, is timeless, whereas the word 'and' often is not. 'Socrates runs and Socrates stops' cannot be reversed.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3)
     A reaction: Shapiro suggests two interpretations: either the classical connectives are revealing the deeper structure of ordinary language, or else they are a simplification of it.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A function is just an arbitrary correspondence between collections [Shapiro]
     Full Idea: The modern extensional notion of function is just an arbitrary correspondence between collections.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 1)
     A reaction: Shapiro links this with the idea that a set is just an arbitrary collection. These minimalist concepts seem like a reaction to a general failure to come up with a more useful and common sense definition.
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Maybe plural quantifiers should be understood in terms of classes or sets [Shapiro]
     Full Idea: Maybe plural quantifiers should themselves be understood in terms of classes (or sets).
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 7.4)
     A reaction: [Shapiro credits Resnik for this criticism]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is 'satisfiable' if it has a model [Shapiro]
     Full Idea: Normally, to say that a sentence Φ is 'satisfiable' is to say that there exists a model of Φ.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: Nothing is said about whether the model is impressive, or founded on good axioms. Tarski builds his account of truth from this initial notion of satisfaction.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
The central notion of model theory is the relation of 'satisfaction' [Shapiro]
     Full Idea: The central notion of model theory is the relation of 'satisfaction', sometimes called 'truth in a model'.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.9)
Model theory deals with relations, reference and extensions [Shapiro]
     Full Idea: Model theory determines only the relations between truth conditions, the reference of singular terms, the extensions of predicates, and the extensions of the logical terminology.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.9)
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Theory ontology is never complete, but is only determined 'up to isomorphism' [Shapiro]
     Full Idea: No object-language theory determines its ontology by itself. The best possible is that all models are isomorphic, in which case the ontology is determined 'up to isomorphism', but only if the domain is finite, or it is stronger than first-order.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 2.5)
     A reaction: This seems highly significant when ontological claims are being made, and is good support for Shapiro's claim that the structures matter, not the objects. There is a parallel in Tarksi's notion of truth-in-all-models. [The Skolem Paradox is the problem]
The set-theoretical hierarchy contains as many isomorphism types as possible [Shapiro]
     Full Idea: Set theorists often point out that the set-theoretical hierarchy contains as many isomorphism types as possible; that is the point of the theory.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: Hence there are a huge number of models for any theory, which are then reduced to the one we want at the level of isomorphism.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Any theory with an infinite model has a model of every infinite cardinality [Shapiro]
     Full Idea: The Löwenheim-Skolem theorems (which apply to first-order formal theories) show that any theory with an infinite model has a model of every infinite cardinality.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: This aspect of the theorems is the Skolem Paradox. Shapiro argues that in first-order this infinity of models for arithmetic must be accepted, but he defends second-order model theory, where 'standard' models can be selected.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Virtually all of mathematics can be modeled in set theory [Shapiro]
     Full Idea: It is well known that virtually every field of mathematics can be reduced to, or modelled in, set theory.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], Intro)
     A reaction: The word 'virtually' is tantalising. The fact that something can be 'modeled' in set theory doesn't mean it IS set theory. Most weather can be modeled in a computer.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are thought of as either Cauchy sequences or Dedekind cuts [Shapiro]
     Full Idea: Real numbers are either Cauchy sequences of rational numbers (interpreted as pairs of integers), or else real numbers can be thought of as Dedekind cuts, certain sets of rational numbers. So π is a Dedekind cut, or an equivalence class of sequences.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 2.5)
     A reaction: This question is parallel to the question of whether natural numbers are Zermelo sets or Von Neumann sets. The famous problem is that there seems no way of deciding. Hence, for Shapiro, we are looking at models, not actual objects.
Understanding the real-number structure is knowing usage of the axiomatic language of analysis [Shapiro]
     Full Idea: There is no more to understanding the real-number structure than knowing how to use the language of analysis. .. One learns the axioms of the implicit definition. ...These determine the realtionships between real numbers.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.9)
     A reaction: This, of course, is the structuralist view of such things, which isn't really interested in the intrinsic nature of anything, but only in its relations. The slogan that 'meaning is use' seems to be in the background.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Cuts are made by the smallest upper or largest lower number, some of them not rational [Shapiro]
     Full Idea: A Dedekind Cut is a division of rationals into two set (A1,A2) where every member of A1 is less than every member of A2. If n is the largest A1 or the smallest A2, the cut is produced by n. Some cuts aren't produced by rationals.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 5.4)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
There is no grounding for mathematics that is more secure than mathematics [Shapiro]
     Full Idea: We cannot ground mathematics in any domain or theory that is more secure than mathematics itself.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: This pronouncement comes after a hundred years of hard work, notably by Gödel, so we'd better believe it. It might explain why Putnam rejects the idea that mathematics needs 'foundations'. Personally I'm prepare to found it in countable objects.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
For intuitionists, proof is inherently informal [Shapiro]
     Full Idea: For intuitionists, proof is inherently informal.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.7)
     A reaction: This thought is quite appealing, so I may have to take intuitionism more seriously. It connects with my view of coherence, which I take to be a notion far too complex for precise definition. However, we don't want 'proof' to just mean 'persuasive'.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers just need an initial object, successors, and an induction principle [Shapiro]
     Full Idea: The natural-number structure is a pattern common to any system of objects that has a distinguished initial object and a successor relation that satisfies the induction principle
     From: Stewart Shapiro (Philosophy of Mathematics [1997], Intro)
     A reaction: If you started your number system with 5, and successors were only odd numbers, something would have gone wrong, so a bit more seems to be needed. How do we decided whether the initial object is 0, 1 or 2?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Mathematics originally concerned the continuous (geometry) and the discrete (arithmetic) [Shapiro]
     Full Idea: Originally, the focus of geometry was space - matter and extension - and the subject matter of arithmetic was quantity. Geometry concerned the continuous, whereas arithmetic concerned the discrete. Mathematics left these roots in the nineteenth century.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], Intro)
     A reaction: Mathematicians can do what they like, but I don't think philosophers of mathematics should lose sight of these two roots. It would be odd if the true nature of mathematics had nothing whatever to do with its origin.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Neo-logicism founds arithmetic on Hume's Principle along with second-order logic [Hale/Wright]
     Full Idea: The result of joining Hume's Principle to second-order logic is a consistent system which is a foundation for arithmetic, in the sense that all the fundamental laws of arithmetic are derivable within it as theorems. This seems a vindication of logicism.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1)
     A reaction: The controversial part seems to be second-order logic, which Quine (for example) vigorously challenged. The contention against most attempts to improve Frege's logicism is that they thereby cease to be properly logical.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
The Julius Caesar problem asks for a criterion for the concept of a 'number' [Hale/Wright]
     Full Idea: The Julius Caesar problem is the problem of supplying a criterion of application for 'number', and thereby setting it up as the concept of a genuine sort of object. (Why is Julius Caesar not a number?)
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 3)
     A reaction: One response would be to deny that numbers are objects. Another would be to derive numbers from their application in counting objects, rather than the other way round. I suspect that the problem only real bothers platonists. Serves them right.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Mathematical foundations may not be sets; categories are a popular rival [Shapiro]
     Full Idea: Foundationalists (e.g. Quine and Lewis) have shown that mathematics can be rendered in theories other than the iterative hierarchy of sets. A dedicated contingent hold that the category of categories is the proper foundation (e.g. Lawvere).
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.3)
     A reaction: I like the sound of that. The categories are presumably concepts that generate sets. Tricky territory, with Frege's disaster as a horrible warning to be careful.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Baseball positions and chess pieces depend entirely on context [Shapiro]
     Full Idea: We cannot imagine a shortstop independent of a baseball infield, or a piece that plays the role of black's queen bishop independent of a chess game.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.1)
     A reaction: This is the basic thought that leads to the structuralist view of things. I must be careful because I like structuralism, but I have attacked the functionalist view in many areas, because it neglects the essences of the functioning entities.
The even numbers have the natural-number structure, with 6 playing the role of 3 [Shapiro]
     Full Idea: The even numbers and the natural numbers greater than 4 both exemplify the natural-number structure. In the former, 6 plays the 3 role, and in the latter 8 plays the 3 role.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.5)
     A reaction: This begins to sound a bit odd. If you count the even numbers, 6 is the third one. I could count pebbles using only evens, but then presumably '6' would just mean '3'; it wouldn't be the actual number 6 acting in a different role, like Laurence Olivier.
Could infinite structures be apprehended by pattern recognition? [Shapiro]
     Full Idea: It is contentious, to say the least, to claim that infinite structures are apprehended by pattern recognition.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.1)
     A reaction: It only seems contentious for completed infinities. The idea that the pattern continues in same way seems (pace Wittgenstein) fairly self-evident, just like an arithmetical series.
The 4-pattern is the structure common to all collections of four objects [Shapiro]
     Full Idea: The 4-pattern is the structure common to all collections of four objects.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.2)
     A reaction: This seems open to Frege's objection, that you can have four disparate abstract concepts, or four spatially scattered items of unknown pattern. It certainly isn't a visual pattern, but then if the only detectable pattern is the fourness, it is circular.
The main mathematical structures are algebraic, ordered, and topological [Shapiro]
     Full Idea: According to Bourbaki, there are three main types of structure: algebraic structures, such as group, ring, field; order structures, such as partial order, linear order, well-order; topological structures, involving limit, neighbour, continuity, and space.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 5.5)
     A reaction: Bourbaki is mentioned as the main champion of structuralism within mathematics.
Some structures are exemplified by both abstract and concrete [Shapiro]
     Full Idea: Some structures are exemplified by both systems of abstracta and systems of concreta.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.2)
     A reaction: It at least seems plausible that one might try to build a physical structure that modelled arithmetic (an abacus might be an instance), so the parallel is feasible. Then to say that the abstract arose from modelling the physical seems equally plausible.
Mathematical structures are defined by axioms, or in set theory [Shapiro]
     Full Idea: Mathematical structures are characterised axiomatically (as implicit definitions), or they are defined in set theory.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.3)
     A reaction: Presumably earlier mathematicians had neither axiomatised their theories, nor expressed them in set theory, but they still had a good working knowledge of the relationships.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
The main versions of structuralism are all definitionally equivalent [Shapiro]
     Full Idea: Ante rem structuralism, eliminative structuralism formulated over a sufficiently large domain of abstract objects, and modal eliminative structuralism are all definitionally equivalent. Neither is to be ontologically preferred, but the first is clearer.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 7.5)
     A reaction: Since Shapiro's ontology is platonist, I would have thought there were pretty obvious grounds for making a choice between that and eliminativm, even if the grounds are intuitive rather than formal.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Is there is no more to structures than the systems that exemplify them? [Shapiro]
     Full Idea: The 'in re' view of structures is that there is no more to structures than the systems that exemplify them.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.3)
     A reaction: I say there is more than just the systems, because we can abstract from them to a common structure, but that doesn't commit us to the existence of such a common structure.
Number statements are generalizations about number sequences, and are bound variables [Shapiro]
     Full Idea: According to 'in re' structuralism, a statement that appears to be about numbers is a disguised generalization about all natural-number sequences; the numbers are bound variables, not singular terms.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 5.3.4)
     A reaction: Any theory of anything which comes out with the thought that 'really it is a variable, not a ...' has my immediate attention and sympathy.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Because one structure exemplifies several systems, a structure is a one-over-many [Shapiro]
     Full Idea: Because the same structure can be exemplified by more than one system, a structure is a one-over-many.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.3)
     A reaction: The phrase 'one-over-many' is a classic Greek hallmark of a universal. Cf. Idea 10217, where Shapiro talks of arriving at structures by abstraction, through focusing and ignoring. This sounds more like a creation than a platonic universal.
There is no 'structure of all structures', just as there is no set of all sets [Shapiro]
     Full Idea: There is no 'structure of all structures', just as there is no set of all sets.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.4)
     A reaction: If one cannot abstract from all the structures to a higher level, why should Shapiro have abstracted from the systems/models to get the over-arching structures?
Shapiro's structuralism says model theory (comparing structures) is the essence of mathematics [Shapiro, by Friend]
     Full Idea: Shapiro's structuralism champions model theory as the branch of mathematics that best describes mathematics. The essence of mathematical activity is seen as an exercise in comparing mathematical structures to each other.
     From: report of Stewart Shapiro (Philosophy of Mathematics [1997], 4.4) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Note it 'best describes' it, rather than being foundational. Assessing whether propositional logic is complete is given as an example of model theory. That makes model theory a very high-level activity. Does it capture simple arithmetic?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Does someone using small numbers really need to know the infinite structure of arithmetic? [Shapiro]
     Full Idea: According to structuralism, someone who uses small natural numbers in everyday life presupposes an infinite structure. It seems absurd that a child who learns to count his toes applies an infinite structure to reality, and thus presupposes the structure.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.2)
     A reaction: Shapiro says we can meet this objection by thinking of smaller structures embedded in larger ones, with the child knowing the smaller ones.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We distinguish realism 'in ontology' (for objects), and 'in truth-value' (for being either true or false) [Shapiro]
     Full Idea: We must distinguish between 'realism in ontology' - that mathematical objects exist - and 'realism in truth-value', which is suggested by the model-theoretic framework - that each well-formed meaningful sentence is non-vacuously either true or false.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], Intro)
     A reaction: My inclination is fairly strongly towards realism of the second kind, but not of the first. A view about the notion of a 'truth-maker' might therefore be required. What do the truths refer to? Answer: not objects, but abstractions from objects.
If mathematical objects are accepted, then a number of standard principles will follow [Shapiro]
     Full Idea: One who believes in the independent existence of mathematical objects is likely to accept the law of excluded middle, impredicative definitions, the axiom of choice, extensionality, and arbitrary sets and functions.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 1)
     A reaction: The underlying thought is that since the objects pre-exist, all of the above simply describe the relations between them, rather than having to actually bring the objects into existence. Personally I would seek a middle ground.
Platonists claim we can state the essence of a number without reference to the others [Shapiro]
     Full Idea: The Platonist view may be that one can state the essence of each number, without referring to the other numbers.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.1)
     A reaction: Frege certainly talks this way (in his 'borehole' analogy). Fine, we are asked to spell out the essence of some number, without making reference either to any 'units' composing it, or to any other number adjacent to it or composing it. Reals?
Platonism must accept that the Peano Axioms could all be false [Shapiro]
     Full Idea: A traditional Platonist has to face the possibility that all of the Peano Axioms are false.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.7)
     A reaction: This would be because the objects exist independently, and so the Axioms are a mere human attempt at pinning them down. For the Formalist the axioms create the numbers, and so couldn't be false. This makes me, alas, warm to platonism!
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition is an outright hindrance to five-dimensional geometry [Shapiro]
     Full Idea: Even if spatial intuition provides a little help in the heuristics of four-dimensional geometry, intuition is an outright hindrance for five-dimensional geometry and beyond.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 5.2)
     A reaction: One might respond by saying 'so much the worse for five-dimensional geometry'. One could hardly abolish the subject, though, so the point must be taken.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
A stone is a position in some pattern, and can be viewed as an object, or as a location [Shapiro]
     Full Idea: For each stone, there is at least one pattern such that the stone is a position in that pattern. The stone can be treated in terms of places-are-objects, or places-are-offices, to be filled with objects drawn from another ontology.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.4)
     A reaction: I believe this is the story J.S. Mill had in mind. His view was that the structures move off into abstraction, but it is only at the empirical and physical level that we can possibly learn the structures.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicism is only noteworthy if logic has a privileged position in our ontology and epistemology [Hale/Wright]
     Full Idea: It is only if logic is metaphysically and epistemologically privileged that a reduction of mathematical theories to logical ones can be philosophically any more noteworthy than a reduction of any mathematical theory to any other.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 8)
     A reaction: It would be hard to demonstrate this privileged position, though intuitively there is nothing more basic in human rationality. That may be a fact about us, but it doesn't make logic basic to nature, which is where proper reduction should be heading.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism might also be revived with a quantificational approach, or an abstraction-free approach [Hale/Wright]
     Full Idea: Two modern approaches to logicism are the quantificational approach of David Bostock, and the abstraction-free approach of Neil Tennant.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1 n2)
     A reaction: Hale and Wright mention these as alternatives to their own view. I merely catalogue them for further examination. My immediate reaction is that Bostock sounds hopeless and Tennant sounds interesting.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Can the ideal constructor also destroy objects? [Shapiro]
     Full Idea: Can we assume that the ideal constructor cannot destroy objects? Presumably the ideal constructor does not have an eraser, and the collection of objects is non-reducing over time.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.5)
     A reaction: A very nice question, which platonists should enjoy.
Presumably nothing can block a possible dynamic operation? [Shapiro]
     Full Idea: Presumably within a dynamic system, once the constructor has an operation available, then no activity can preclude the performance of the operation?
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.5)
     A reaction: There seems to be an interesting assumption in static accounts of mathematics, that all the possible outputs of (say) a function actually exist with a theory. In an actual dynamic account, the constructor may be smitten with lethargy.
7. Existence / A. Nature of Existence / 1. Nature of Existence
Can we discover whether a deck is fifty-two cards, or a person is time-slices or molecules? [Shapiro]
     Full Idea: Can we 'discover' whether a deck is really identical with its fifty-two cards, or whether a person is identical with her corresponding time-slices, molecules, or space-time points? This is like Benacerraf's problem about numbers.
     From: Stewart Shapiro (Philosophy of Mathematics [1997])
     A reaction: Shapiro is defending the structuralist view, that each of these is a model of an agreed reality, so we cannot choose a right model if they all satisfy the necessary criteria.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The abstract/concrete boundary now seems blurred, and would need a defence [Shapiro]
     Full Idea: The epistemic proposals of ontological realists in mathematics (such as Maddy and Resnik) has resulted in the blurring of the abstract/concrete boundary. ...Perhaps the burden is now on defenders of the boundary.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.1)
     A reaction: As Shapiro says, 'a vague boundary is still a boundary', so we need not be mesmerised by borderline cases. I would defend the boundary, with the concrete just being physical. A chair is physical, but our concept of a chair may already be abstract.
Mathematicians regard arithmetic as concrete, and group theory as abstract [Shapiro]
     Full Idea: Mathematicians use the 'abstract/concrete' label differently, with arithmetic being 'concrete' because it is a single structure (up to isomorphism), while group theory is considered more 'abstract'.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.1 n1)
     A reaction: I would say that it is the normal distinction, but they have moved the significant boundary up several levels in the hierarchy of abstraction.
7. Existence / D. Theories of Reality / 7. Fictionalism
Fictionalism eschews the abstract, but it still needs the possible (without model theory) [Shapiro]
     Full Idea: Fictionalism takes an epistemology of the concrete to be more promising than concrete-and-abstract, but fictionalism requires an epistemology of the actual and possible, secured without the benefits of model theory.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 7.2)
     A reaction: The idea that possibilities (logical, natural and metaphysical) should be understood as features of the concrete world has always struck me as appealing, so I have (unlike Shapiro) no intuitive problems with this proposal.
Structuralism blurs the distinction between mathematical and ordinary objects [Shapiro]
     Full Idea: One result of the structuralist perspective is a healthy blurring of the distinction between mathematical and ordinary objects. ..'According to the structuralist, physical configurations often instantiate mathematical patterns'.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.4)
     A reaction: [The quotation is from Penelope Maddy 1988 p.28] This is probably the main reason why I found structuralism interesting, and began to investigate it.
9. Objects / A. Existence of Objects / 1. Physical Objects
The notion of 'object' is at least partially structural and mathematical [Shapiro]
     Full Idea: The very notion of 'object' is at least partially structural and mathematical.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.1)
     A reaction: [In the context, Shapiro clearly has physical objects in mind] This view seems to fit with Russell's 'relational' view of the physical world, though Russell rejected structuralism in mathematics. I take abstraction to be part of perception.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
A blurry border is still a border [Shapiro]
     Full Idea: A blurry border is still a border.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.3)
     A reaction: This remark deserves to be quoted in almost every area of philosophy, against those who attack a concept by focusing on its vague edges. Philosophers should focus on central cases, not borderline cases (though the latter may be of interest).
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
10. Modality / A. Necessity / 6. Logical Necessity
Logical modalities may be acceptable, because they are reducible to satisfaction in models [Shapiro]
     Full Idea: For many philosophers the logical notions of possibility and necessity are exceptions to a general scepticism, perhaps because they have been reduced to model theory, via set theory. Thus Φ is logically possible if there is a model that satisfies it.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 7.1)
     A reaction: Initially this looks a bit feeble, like an empiricist only believing what they actually see right now, but the modern analytical philosophy project seems to be the extension of logical accounts further and further into what we intuit about modality.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Why does the 'myth' of possible worlds produce correct modal logic? [Shapiro]
     Full Idea: The fact that the 'myth' of possible worlds happens to produce the correct modal logic is itself a phenomenon in need of explanation.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 7.4)
     A reaction: The claim that it produces 'the' correct modal logic seems to beg a lot of questions, given the profusion of modal systems. This is a problem with any sort of metaphysics which invokes fictionalism - what were those particular fictions responding to?
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We apprehend small, finite mathematical structures by abstraction from patterns [Shapiro]
     Full Idea: The epistemological account of mathematical structures depends on the size and complexity of the structure, but small, finite structures are apprehended through abstraction via simple pattern recognition.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], Intro)
     A reaction: Yes! This I take to be the reason why John Stuart Mill was not a fool in his discussion of the pebbles. Successive abstractions (and fictions) will then get you to more complex structures.
18. Thought / E. Abstraction / 2. Abstracta by Selection
Simple types can be apprehended through their tokens, via abstraction [Shapiro]
     Full Idea: Some realists argue that simple types can be apprehended through their tokens, via abstraction.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.2)
     A reaction: One might rephrase that to say that types are created by abstraction from tokens (and then preserved in language).
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
We can apprehend structures by focusing on or ignoring features of patterns [Shapiro]
     Full Idea: One way to apprehend a particular structure is through a process of pattern recognition, or abstraction. One observes systems in a structure, and focuses attention on the relations among the objects - ignoring features irrelevant to their relations.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.1)
     A reaction: A lovely statement of the classic Aristotelian abstractionist approach of focusing-and-ignoring. But this is made in 1997, long after Frege and Geach ridiculed it. It just won't go away - not if you want a full and unified account of what is going on.
We can focus on relations between objects (like baseballers), ignoring their other features [Shapiro]
     Full Idea: One can observe a system and focus attention on the relations among the objects - ignoring those features of the objects not relevant to the system. For example, we can understand a baseball defense system by going to several games.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], p.74), quoted by Charles Chihara - A Structural Account of Mathematics
     A reaction: This is Shapiro perpetrating precisely the wicked abstractionism which Frege and Geach claim is ridiculous. Frege objects that abstract concepts then become private, but baseball defences are discussed in national newspapers.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
One first-order abstraction principle is Frege's definition of 'direction' in terms of parallel lines [Hale/Wright]
     Full Idea: An example of a first-order abstraction principle is Frege's definition of 'direction' in terms of parallel lines; a higher-order example (which refers to first-order predicates) defines 'equinumeral' in terms of one-to-one correlation (Hume's Principle).
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1)
     A reaction: [compressed] This is the way modern logicians now treat abstraction, but abstraction principles include the elusive concept of 'equivalence' of entities, which may be no more than that the same adjective ('parallel') can be applied to them.
Abstract objects might come by abstraction over an equivalence class of base entities [Shapiro]
     Full Idea: Perhaps we can introduce abstract objects by abstraction over an equivalence relation on a base class of entities, just as Frege suggested that 'direction' be obtained from parallel lines. ..Properties must be equinumerous, but need not be individuated.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.5)
     A reaction: [He cites Hale and Wright as the originators of this} It is not entirely clear why this is 'abstraction', rather than just drawing attention to possible groupings of entities.