Combining Texts

All the ideas for 'Thinking About Mathematics', 'Intensional Logic' and 'Review of Husserl's 'Phil of Arithmetic''

unexpand these ideas     |    start again     |     specify just one area for these texts


37 ideas

2. Reason / D. Definition / 2. Aims of Definition
A definition need not capture the sense of an expression - just get the reference right [Frege, by Dummett]
     Full Idea: Frege expressly denies that a correct definition need capture the sense of the expression it defines: it need only get the reference right.
     From: report of Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894]) by Michael Dummett - Frege philosophy of mathematics Ch.3
     A reaction: This might hit up against the renate/cordate problem, of two co-extensive concepts, where the definition gets the extension right, but the intension wrong.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Since every definition is an equation, one cannot define equality itself [Frege]
     Full Idea: Since every definition is an equation, one cannot define equality itself.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.327)
     A reaction: This seems a particularly nice instance of the general rule that 'you have to start somewhere'. It is a nice test case for the nature of meaning to ask 'what do you understand when you understand equality?', given that you can't define it.
4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Counting rests on one-one correspondence, of numerals to objects [Frege]
     Full Idea: Counting rests itself on a one-one correlation, namely of numerals 1 to n and the objects.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894]), quoted by Richard G. Heck - Cardinality, Counting and Equinumerosity 3
     A reaction: Parsons observes that counting will establish a one-one correspondence, but that doesn't make it the aim of counting, and so Frege hasn't answered Husserl properly. Which of the two is conceptually prior? How do you decide.
Husserl rests sameness of number on one-one correlation, forgetting the correlation with numbers themselves [Frege]
     Full Idea: When Husserl says that sameness of number can be shown by one-one correlation, he forgets that this counting itself rests on a univocal one-one correlation, namely that between the numerals 1 to n and the objects of the set.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.326)
     A reaction: This is the platonist talking. Neo-logicism is attempting to build numbers just from the one-one correlation of objects.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
In a number-statement, something is predicated of a concept [Frege]
     Full Idea: In a number-statement, something is predicated of a concept.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.328)
     A reaction: A succinct statement of Frege's theory of numbers. By my lights that would make numbers at least second-order abstractions.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Our concepts recognise existing relations, they don't change them [Frege]
     Full Idea: The bringing of an object under a concept is merely the recognition of a relation which previously already obtained, [but in the abstractionist view] objects are essentially changed by the process, so that objects brought under a concept become similar.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.324)
     A reaction: Frege's view would have to account for occasional misapplications of concepts, like taking a dolphin to be a fish, or falsely thinking there is someone in the cellar.
Numbers are not real like the sea, but (crucially) they are still objective [Frege]
     Full Idea: The sea is something real and a number is not; but this does not prevent it from being something objective; and that is the important thing.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.337)
     A reaction: This seems a qualification of Frege's platonism. It is why people start talking about abstract items which 'subsist', instead of 'exist'. It shows Frege's motivation in all this, which is to secure logic and maths from the vagaries of psychology.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The naïve view of number is that it is like a heap of things, or maybe a property of a heap [Frege]
     Full Idea: The most naïve opinion of number is that it is something like a heap in which things are contained. The next most naïve view is the conception of number as the property of a heap, cleansing the objects of their particulars.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.323)
     A reaction: A hundred toothbrushes and a hundred sponges can be seen to contain the same number (by one-to-one mapping), without actually knowing what that number is. There is something numerical in the heap, even if the number is absent.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
If objects are just presentation, we get increasing abstraction by ignoring their properties [Frege]
     Full Idea: If an object is just presentation, we can pay less attention to a property and it disappears. By letting one characteristic after another disappear, we obtain concepts that are increasingly more abstract.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.324)
     A reaction: Frege despises this view. Note there is scope in the despised view for degrees or levels of abstraction, defined in terms of number of properties ignored. Part of Frege's criticism is realist. He retains the object, while Husserl imagines it different.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
18. Thought / A. Modes of Thought / 1. Thought
Many people have the same thought, which is the component, not the private presentation [Frege]
     Full Idea: The same thought can be grasped by many people. The components of a thought, and even more so the things themselves, must be distinguished from the presentations which in the soul accompany the grasping of a thought.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.325)
     A reaction: This is the basic realisation, also found in Russell, of how so much confusion has crept into philosophy, in Berkeley, for example. Frege starts down the road which leads to the externalist view of content.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
Disregarding properties of two cats still leaves different objects, but what is now the difference? [Frege]
     Full Idea: If from a black cat and a white cat we disregard colour, then posture, then location, ..we finally derive something which is completely without restrictions on content; but what is derived from the objects does differ, although it is not easy to say how.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.324)
     A reaction: This is a key objection to abstractionism for Frege - we are counting two cats, not two substrata of essential catness, or whatever. But what makes a cat countable? (Key question!) It isn't its colour, or posture or location.
How do you find the right level of inattention; you eliminate too many or too few characteristics [Frege]
     Full Idea: Inattention is a very strong lye which must not be too concentrated, or it dissolves everything (such as the connection between the objects), but must not be too weak, to produce sufficient change. Personally I cannot find the proper dilution.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.330)
     A reaction: We may sympathise with the lack of precision here (frustrating for a logician), but it is not difficult to say of a baseball defence 'just concentrate on the relations, and ignore the individuals who implement it'. You retain basic baseball skills.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Number-abstraction somehow makes things identical without changing them! [Frege]
     Full Idea: Number-abstraction simply has the wonderful and very fruitful property of making things absolutely the same as one another without altering them. Something like this is possible only in the psychological wash-tub.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.332)
     A reaction: Frege can be awfully sarcastic. I don't really see his difficulty. For mathematics we only need to know what is countable about an object - we don't need to know how many hairs there are on the cat, only that it has identity.
19. Language / A. Nature of Meaning / 2. Meaning as Mental
Psychological logicians are concerned with sense of words, but mathematicians study the reference [Frege]
     Full Idea: The psychological logicians are concerned with the sense of the words and with the presentations, which they do not distinguish from the sense; but the mathematicians are concerned with the matter itself, with the reference of the words.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.326)
     A reaction: This is helpful for showing the point of his sense/reference distinction; it is part of his campaign against psychologism, by showing that there is a non-psychological component to language - the reference, where it meets the public world.
Identity baffles psychologists, since A and B must be presented differently to identify them [Frege]
     Full Idea: The relation of sameness remains puzzling to a psychological logician. They cannot say 'A is the same as B', because that requires distinguishing A from B, so that these would have to be different presentations.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.327)
     A reaction: This is why Frege needed the concept of reference, so that identity could be outside the mind (as in Hesperus = Phosophorus). Think about an electron; now think about a different electron.