Combining Texts

All the ideas for 'Thinking About Mathematics', 'Frege philosophy of mathematics' and 'Evil and Omnipotence'

unexpand these ideas     |    start again     |     specify just one area for these texts


44 ideas

2. Reason / D. Definition / 7. Contextual Definition
A contextual definition permits the elimination of the expression by a substitution [Dummett]
     Full Idea: The standard sense of a 'contextual definition' permits the eliminating of the defined expression, by transforming any sentence containing it into an equivalent one not containing it.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.11)
     A reaction: So the whole definition might be eliminated by a single word, which is not equivalent to the target word, which is embedded in the original expression. Clearly contextual definitions have some problems
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
In classical logic, logical truths are valid formulas; in higher-order logics they are purely logical [Dummett]
     Full Idea: For sentential or first-order logic, the logical truths are represented by valid formulas; in higher-order logics, by sentences formulated in purely logical terms.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 3)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
A prime number is one which is measured by a unit alone [Dummett]
     Full Idea: A prime number is one which is measured by a unit alone.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 11)
     A reaction: We might say that the only way of 'reaching' or 'constructing' a prime is by incrementing by one till you reach it. That seems a pretty good definition. 64, for example, can be reached by a large number of different routes.
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Addition of quantities is prior to ordering, as shown in cyclic domains like angles [Dummett]
     Full Idea: It is essential to a quantitative domain of any kind that there should be an operation of adding its elements; that this is more fundamental thaat that they should be linearly ordered by magnitude is apparent from cyclic domains like that of angles.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 22 'Quantit')
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A number is a multitude composed of units [Dummett]
     Full Idea: A number is a multitude composed of units.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 2)
     A reaction: This is outdated by the assumption that 0 and 1 are also numbers, but if we say one is really just the 'unit' which is preliminary to numbers, and 0 is as bogus a number as i is, we might stick with the original Greek distinction.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
We understand 'there are as many nuts as apples' as easily by pairing them as by counting them [Dummett]
     Full Idea: A child understands 'there are just as many nuts as apples' as easily by pairing them off as by counting them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: I find it very intriguing that you could know that two sets have the same number, without knowing any numbers. Is it like knowing two foreigners spoke the same words, without understanding them? Or is 'equinumerous' conceptually prior to 'number'?
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The identity of a number may be fixed by something outside structure - by counting [Dummett]
     Full Idea: The identity of a mathematical object may sometimes be fixed by its relation to what lies outside the structure to which it belongs. It is more fundamental to '3' that if certain objects are counted, there are three of them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This strikes me as Dummett being pushed (by his dislike of the purely abstract picture given by structuralism) back to a rather empiricist and physical view of numbers, though he would totally deny that.
Numbers aren't fixed by position in a structure; it won't tell you whether to start with 0 or 1 [Dummett]
     Full Idea: The number 0 is not differentiated from 1 by its position in a progression, otherwise there would be no difference between starting with 0 and starting with 1. That is enough to show that numbers are not identifiable just as positions in structures.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This sounds conclusive, but doesn't feel right. If numbers are a structure, then where you 'start' seems unimportant. Where do you 'start' in St Paul's Cathedral? Starting sounds like a constructivist concept for number theory.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Set theory isn't part of logic, and why reduce to something more complex? [Dummett]
     Full Idea: The two frequent modern objects to logicism are that set theory is not part of logic, or that it is of no interest to 'reduce' a mathematical theory to another, more complex, one.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: Dummett says these are irrelevant (see context). The first one seems a good objection. The second one less so, because whether something is 'complex' is a quite different issue from whether it is ontologically more fundamental.
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The distinction of concrete/abstract, or actual/non-actual, is a scale, not a dichotomy [Dummett]
     Full Idea: The distinction between concrete and abstract objects, or Frege's corresponding distinction between actual and non-actual objects, is not a sharp dichotomy, but resembles a scale upon which objects occupy a range of positions.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: This might seem right if you live (as Dummett chooses to) in the fog of language, but it surely can't be right if you think about reality. Is the Equator supposed to be near the middle of his scale? Either there is an equator, or there isn't.
7. Existence / D. Theories of Reality / 2. Realism
Realism is just the application of two-valued semantics to sentences [Dummett]
     Full Idea: Fully fledged realism depends on - indeed, may be identified with - an undiluted application to sentences of the relevant kind of straightforwards two-valued semantics.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: This is the sort of account you get from a whole-heartedly linguistic philosopher. Personally I would say that Dummett has got it precisely the wrong way round: I adopt a two-valued semantics because my metaphysics is realist.
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Nominalism assumes unmediated mental contact with objects [Dummett]
     Full Idea: The nominalist superstition is based ultimately on the myth of the unmediated presentation of genuine concrete objects to the mind.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: Personally I am inclined to favour nominalism and a representative theory of perception, which acknowledges some 'mediation', but of a non-linguistic form. Any good theory here had better include animals, which seem to form concepts.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
The existence of abstract objects is a pseudo-problem [Dummett]
     Full Idea: The existence of abstract objects is a pseudo-problem.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: This remark follows after Idea 9884, which says the abstract/concrete distinction is a sliding scale. Personally I take the distinction to be fairly sharp, and it is therefore probably the single most important problem in the whole of human thought.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Abstract objects nowadays are those which are objective but not actual [Dummett]
     Full Idea: Objects which are objective but not actual are precisely what are now called abstract objects.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: Why can there not be subjective abstract objects? 'My favourites are x, y and z'. 'I'll decide later what my favourites are'. 'I only buy my favourites - nothing else'.
It is absurd to deny the Equator, on the grounds that it lacks causal powers [Dummett]
     Full Idea: If someone argued that assuming the existence of the Equator explains nothing, and it has no causal powers, so everything would be the same if it didn't exist, so we needn't accept its existence, we should gape at the crudity of the misunderstanding.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: Not me. I would gape if someone argued that latitude 55° 14' (and an infinity of other lines) exists for the same reasons (whatever they may be) that the Equator exists. A mode of description can't create an object.
'We've crossed the Equator' has truth-conditions, so accept the Equator - and it's an object [Dummett]
     Full Idea: 'We've crossed the Equator' is judged true if we are nearer the other Pole, so it not for philosophers to deny that the Earth has an equator, and we see that the Equator is not a concept or relation or function, so it must be classified as an object.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.15)
     A reaction: A lovely example of linguistic philosophy in action (and so much the worse for that, I would say). A useful label here, I suggest (unoriginally, I think), is that we should label such an item a 'semantic object', rather than a real object in our ontology.
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
Abstract objects need the context principle, since they can't be encountered directly [Dummett]
     Full Idea: To recognise that there is no objection in principle to abstract objects requires acknowledgement that some form of the context principle is correct, since abstract objects can neither be encountered nor presented.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.16)
     A reaction: I take this to be an immensely important idea. I consider myself to be a philosopher of thought rather than a philosopher of language (Dummett's distinction, he being one of the latter). Thought connects to the world, but does it connect to abstracta?
9. Objects / F. Identity among Objects / 2. Defining Identity
Content is replaceable if identical, so replaceability can't define identity [Dummett, by Dummett]
     Full Idea: Husserl says the only ground for assuming the replaceability of one content by another is their identity; we are therefore not entitled to define their identity as consisting in their replaceability.
     From: report of Michael Dummett (Frege philosophy of mathematics [1991]) by Michael Dummett - Frege philosophy of mathematics Ch.12
     A reaction: This is a direct challenge to Frege. Tricky to arbitrate, as it is an issue of conceptual priority. My intuition is with Husserl, but maybe the two are just benignly inerdefinable.
Frege introduced criteria for identity, but thought defining identity was circular [Dummett]
     Full Idea: In his middle period Frege rated identity indefinable, on the ground that every definition must take the form of an identity-statement. Frege introduced the notion of criterion of identity, which has been widely used by analytical philosophers.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.10)
     A reaction: The objection that attempts to define identity would be circular sounds quite plausible. It sounds right to seek a criterion for type-identity (in shared properties or predicates), but token-identity looks too fundamental to give clear criteria.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
18. Thought / D. Concepts / 4. Structure of Concepts / i. Conceptual priority
Maybe a concept is 'prior' to another if it can be defined without the second concept [Dummett]
     Full Idea: One powerful argument for a thesis that one notion is conceptually prior to another is the possibility of defining the first without reference to the second.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: You'd better check whether you can't also define the second without reference to the first before you rank their priority. And maybe 'conceptual priority' is conceptually prior to 'definition' (i.e. definition needs a knowledge of priority). Help!
An argument for conceptual priority is greater simplicity in explanation [Dummett]
     Full Idea: An argument for conceptual priority is greater simplicity in explanation.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: One might still have to decide priority between two equally simple (or complex) concepts. I begin to wonder whether 'priority' has any other than an instrumental meaning (according to which direction you wish to travel - is London before Edinburgh?).
18. Thought / E. Abstraction / 1. Abstract Thought
Abstract terms are acceptable as long as we know how they function linguistically [Dummett]
     Full Idea: To recognise abstract terms as perfectly proper items of a vocabulary depends upon allowing that all that is necessary for the lawful introduction of a range of expressions into the language is a coherent account of how they are to function in sentences.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.16)
     A reaction: Why can't the 'coherent account' of the sentences include the fact that there must be something there for the terms to refer to? How else are we to eliminate nonsense words which obey good syntactical rules? Cf. Idea 9872.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
There is no reason why abstraction by equivalence classes should be called 'logical' [Dummett, by Tait]
     Full Idea: Dummett uses the term 'logical abstraction' for the construction of the abstract objects as equivalence classes, but it is not clear why we should call this construction 'logical'.
     From: report of Michael Dummett (Frege philosophy of mathematics [1991]) by William W. Tait - Frege versus Cantor and Dedekind n 14
     A reaction: This is a good objection, and Tait offers a much better notion of 'logical abstraction' (as involving preconditions for successful inference), in Idea 9981.
We arrive at the concept 'suicide' by comparing 'Cato killed Cato' with 'Brutus killed Brutus' [Dummett]
     Full Idea: We arrive at the concept of suicide by considering both occurrences in the sentence 'Cato killed Cato' of the proper name 'Cato' as simultaneously replaceable by another name, say 'Brutus', and so apprehending the pattern common to both sentences.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.14)
     A reaction: This is intended to illustrate Frege's 'logical abstraction' technique, as opposed to wicked psychological abstraction. The concept of suicide is the pattern 'x killed x'. This is a crucial example if we are to understand abstraction...
18. Thought / E. Abstraction / 8. Abstractionism Critique
To abstract from spoons (to get the same number as the forks), the spoons must be indistinguishable too [Dummett]
     Full Idea: To get units by abstraction, units arrived at by abstraction from forks must the identical to that abstracted from spoons, with no trace of individuality. But if spoons can no longer be differentiated from forks, they can't differ from one another either.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 8)
     A reaction: [compressed] Dummett makes the point better than Frege did. Can we 'think of a fork insofar as it is countable, ignoring its other features'? What are we left thinking of? Frege says it must still be the whole fork. 'Nice fork, apart from the colour'.
19. Language / C. Assigning Meanings / 5. Fregean Semantics
Fregean semantics assumes a domain articulated into individual objects [Dummett]
     Full Idea: A Fregean semantics assumes a domain already determinately articulated into individual objects.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 8)
     A reaction: A more interesting criticism than most of Dummett's other challenges to the Frege/Davidson view. I am beginning to doubt whether the semantics and the ontology can ever be divorced from the psychology, of thought, interests, focus etc.
27. Natural Reality / C. Space / 3. Points in Space
Why should the limit of measurement be points, not intervals? [Dummett]
     Full Idea: By what right do we assume that the limit of measurement is a point, and not an interval?
     From: Michael Dummett (Frege philosophy of mathematics [1991], 22 'Quantit')
29. Religion / D. Religious Issues / 3. Problem of Evil / a. Problem of Evil
Is evil an illusion, or a necessary contrast, or uncontrollable, or necessary for human free will? [Mackie, by PG]
     Full Idea: Perhaps evil is an illusion, or it is necessary for good to exist, or in humans it is required because we have free will, or God lacks the full power to control it, but none of these looks convincing.
     From: report of J.L. Mackie (Evil and Omnipotence [1955], §B) by PG - Db (ideas)
The propositions that God is good and omnipotent, and that evil exists, are logically contradictory [Mackie, by PG]
     Full Idea: There is a contradiction between the propositions that God is wholly good, God is omnipotent, and evil exists, and one of them has got to give way (assuming good eliminates evil, and omnipotence has no limit).
     From: report of J.L. Mackie (Evil and Omnipotence [1955], Pref.) by PG - Db (ideas)