Combining Texts

All the ideas for 'Thinking About Mathematics', 'Truth-makers' and 'Philosophy of Arithmetic'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

3. Truth / B. Truthmakers / 2. Truthmaker Relation
Part-whole is the key relation among truth-makers [Mulligan/Simons/Smith]
     Full Idea: The most important (ontological) relations holding among truth-makers are the part and whole relations.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §6)
     A reaction: Hence Peter Simons goes off and writes the best known book on mereology. Looks very promising to me.
3. Truth / B. Truthmakers / 5. What Makes Truths / a. What makes truths
Truth-makers cannot be the designata of the sentences they make true [Mulligan/Simons/Smith]
     Full Idea: Truth-makers cannot be the designata of the sentences they make true, because sentences with more than one truth-maker would then be ambiguous, and 'a' and 'a exists' would have the same designatum.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §3)
Moments (objects which cannot exist alone) may serve as truth-makers [Mulligan/Simons/Smith]
     Full Idea: A 'moment' is an existentially dependent or non-self-sufficient object, that is, an object which is of such a nature that it cannot exist alone, ....... and we suggest that moments could serve as truth-makers.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §2)
     A reaction: [These three writers invented the term 'truth-maker']
The truth-maker for a sentence may not be unique, or may be a combination, or several separate items [Mulligan/Simons/Smith]
     Full Idea: A proposition may have a minimal truth-maker which is not unique, or a sentence may be made true by no single truth-maker but only by several jointly, or again only by several separately.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §3)
Despite negative propositions, truthmakers are not logical complexes, but ordinary experiences [Mulligan/Simons/Smith]
     Full Idea: Because of negative propositions, investigators of truth-makers have said that they are special non-objectual entities with a logical complexity, but we think a theory is possible in which the truth relation is tied to ordinary and scientific experience.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §6)
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Correspondence has to invoke facts or states of affairs, just to serve as truth-makers [Mulligan/Simons/Smith]
     Full Idea: The correspondence theory of truth invokes a special category of non-objectual entities - facts, states of affairs, or whatever - simply to serve as truth-makers.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §3)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
0 is not a number, as it answers 'how many?' negatively [Husserl, by Dummett]
     Full Idea: Husserl contends that 0 is not a number, on the grounds that 'nought' is a negative answer to the question 'how many?'.
     From: report of Edmund Husserl (Philosophy of Arithmetic [1894], p.144) by Michael Dummett - Frege philosophy of mathematics Ch.8
     A reaction: I seem to be in a tiny minority in thinking that Husserl may have a good point. One apple is different from one orange, but no apples are the same as no oranges. That makes 0 a very peculiar number. See Idea 9838.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Multiplicity in general is just one and one and one, etc. [Husserl]
     Full Idea: Multiplicity in general is no more than something and something and something, etc.; ..or more briefly, one and one and one, etc.
     From: Edmund Husserl (Philosophy of Arithmetic [1894], p.85), quoted by Gottlob Frege - Review of Husserl's 'Phil of Arithmetic'
     A reaction: Frege goes on to attack this idea fairly convincingly. It seems obvious that it is hard to say that you have seventeen items, if the only numberical concept in your possession is 'one'. How would you distinguish 17 from 16? What makes the ones 'multiple'?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Husserl said counting is more basic than Frege's one-one correspondence [Husserl, by Heck]
     Full Idea: Husserl famously argued that one should not explain number in terms of equinumerosity (or one-one correspondence), but should explain equinumerosity in terms of sameness of number, which should be characterised in terms of counting.
     From: report of Edmund Husserl (Philosophy of Arithmetic [1894]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 3
     A reaction: [Heck admits he hasn't read the Husserl] I'm very sympathetic to Husserl, though nearly all modern thinking favours Frege. Counting connects numbers to their roots in the world. Mathematicians seem oblivious of such things.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
Husserl identifies a positive mental act of unification, and a negative mental act for differences [Husserl, by Frege]
     Full Idea: Husserl identifies a 'unitary mental act' where several contents are connected or related to one another, and also a difference-relation where two contents are related to one another by a negative judgement.
     From: report of Edmund Husserl (Philosophy of Arithmetic [1894], p.73-74) by Gottlob Frege - Review of Husserl's 'Phil of Arithmetic' p.322
     A reaction: Frege is setting this up ready for a fairly vicious attack. Where Hume has a faculty for spotting resemblances, it is not implausible that we should also be hard-wired to spot differences. 'You look different; have you changed your hair style?'
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
We clarify concepts (e.g. numbers) by determining their psychological origin [Husserl, by Velarde-Mayol]
     Full Idea: Husserl said that the clarification of any concept is made by determining its psychological origin. He is concerned with the psychological origins of the operation of calculating cardinal numbers.
     From: report of Edmund Husserl (Philosophy of Arithmetic [1894]) by Victor Velarde-Mayol - On Husserl 2.2
     A reaction: This may not be the same as the 'psychologism' that Frege so despised, because Husserl is offering a clarification, rather than the intrinsic nature of number concepts. It is not a theory of the origin of numbers.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Psychologism blunders in focusing on concept-formation instead of delineating the concepts [Dummett on Husserl]
     Full Idea: Husserl substitutes his account of the process of concept-formation for a delineation of the concept. It is above all in making this substitution that psychologism is objectionable (and Frege opposed it so vehemently).
     From: comment on Edmund Husserl (Philosophy of Arithmetic [1894]) by Michael Dummett - Frege philosophy of mathematics Ch.2
     A reaction: While this is a powerful point which is a modern orthodoxy, it hardly excludes a study of concept-formation from being of great interest for other reasons. It may not appeal to logicians, but it is crucial part of the metaphysics of nature.
Husserl wanted to keep a shadowy remnant of abstracted objects, to correlate them [Dummett on Husserl]
     Full Idea: Husserl saw that abstracted units, though featureless, must in some way retain their distinctness, some shadowy remnant of their objects. So he wanted to correlate like-numbered sets, not just register their identity, but then abstractionism fails.
     From: comment on Edmund Husserl (Philosophy of Arithmetic [1894]) by Michael Dummett - Frege philosophy of mathematics Ch.12
     A reaction: Abstractionism is held to be between the devil and the deep blue sea, of depending on units which are identifiable, when they are defined as devoid of all individuality. We seem forced to say that the only distinction between them is countability.