Combining Texts

All the ideas for 'Thinking About Mathematics', 'Moral Relativism' and 'Rationality'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

2. Reason / A. Nature of Reason / 1. On Reason
You can be rational with undetected or minor inconsistencies [Harman]
     Full Idea: Rationality doesn't require consistency, because you can be rational despite undetected inconsistencies in beliefs, and it isn't always rational to respond to a discovery of inconsistency by dropping everything in favour of eliminating that inconsistency.
     From: Gilbert Harman (Rationality [1995], 1.2)
     A reaction: This strikes me as being correct, and is (I am beginning to realise) a vital contribution made to our understanding by pragmatism. European thinking has been too keen on logic as the model of good reasoning.
2. Reason / A. Nature of Reason / 6. Coherence
A coherent conceptual scheme contains best explanations of most of your beliefs [Harman]
     Full Idea: A set of unrelated beliefs seems less coherent than a tightly organized conceptual scheme that contains explanatory principles that make sense of most of your beliefs; this is why inference to the best explanation is an attractive pattern of inference.
     From: Gilbert Harman (Rationality [1995], 1.5.2)
     A reaction: I find this a very appealing proposal. The central aim of rational thought seems to me to be best explanation, and I increasingly think that most of my beliefs rest on their apparent coherence, rather than their foundations.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
12. Knowledge Sources / B. Perception / 5. Interpretation
When we say 'is red' we don't mean 'seems red to most people' [Foot]
     Full Idea: One might think that 'is red' means the same as 'seems red to most people', forgetting that when asked if an object is red we look at it to see if it is red, and not in order to estimate the reaction that others will have to it.
     From: Philippa Foot (Moral Relativism [1979], p.23)
     A reaction: True, but we are conscious of our own reliability as observers (e.g. if colourblind, or with poor hearing or eyesight). I don't take my glasses off, have a look, and pronounce that the object is blurred. Ordinary language philosophy in action.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
14. Science / C. Induction / 1. Induction
Enumerative induction is inference to the best explanation [Harman]
     Full Idea: We might think of enumerative induction as inference to the best explanation, taking the generalization to explain its instances.
     From: Gilbert Harman (Rationality [1995], 1.5.2)
     A reaction: This is a helpful connection. The best explanation of these swans being white is that all swans are white; it ceased to be the best explanation when black swans turned up. In the ultimate case, a law of nature is the explanation.
14. Science / C. Induction / 3. Limits of Induction
Induction is 'defeasible', since additional information can invalidate it [Harman]
     Full Idea: It is sometimes said that inductive reasoning is 'defeasible', meaning that considerations that support a given conclusion can be defeated by additional information.
     From: Gilbert Harman (Rationality [1995], 1.4.5)
     A reaction: True. The point is that being defeasible does not prevent such thinking from being rational. The rational part of it is to acknowledge that your conclusion is defeasible.
14. Science / C. Induction / 4. Reason in Induction
All reasoning is inductive, and deduction only concerns implication [Harman]
     Full Idea: Deductive logic is concerned with deductive implication, not deductive reasoning; all reasoning is inductive
     From: Gilbert Harman (Rationality [1995], 1.4.5)
     A reaction: This may be an attempt to stipulate how the word 'reasoning' should be used in future. It is, though, a bold and interesting claim, given the reputation of induction (since Hume) of being a totally irrational process.
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
Ordinary rationality is conservative, starting from where your beliefs currently are [Harman]
     Full Idea: Ordinary rationality is generally conservative, in the sense that you start from where you are, with your present beliefs and intentions.
     From: Gilbert Harman (Rationality [1995], 1.3)
     A reaction: This stands opposed to the Cartesian or philosophers' rationality, which requires that (where possible) everything be proved from scratch. Harman seems right, that the normal onus of proof is on changing beliefs, rather proving you should retain them.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / e. Ethical cognitivism
All people need affection, cooperation, community and help in trouble [Foot]
     Full Idea: There is a great deal that all men have in common; all need affection, the cooperation of others, a place in a community, and help in trouble.
     From: Philippa Foot (Moral Relativism [1979], p.33)
     A reaction: There seem to be some people who don't need affection or a place in a community, though it is hard to imagine them being happy. These kind of facts are the basis for any sensible cognitivist view of ethics. They are basic to Foot's view.
22. Metaethics / B. Value / 1. Nature of Value / f. Ultimate value
Do we have a concept of value, other than wanting something, or making an effort to get it? [Foot]
     Full Idea: Do we know what we mean by saying that anything has value, or even that we value it, as opposed to wanting it or being prepared to go to trouble to get it?
     From: Philippa Foot (Moral Relativism [1979], p.35)
     A reaction: Well, I value Rembrandt paintings, but have no aspiration to own one (and would refuse it if offered, because I couldn't look after it properly). And 'we' don't want to move the Taj Mahal to London. She has not expressed this good point very well.