Combining Texts

All the ideas for 'Thinking About Mathematics', 'Moral Arguments' and 'Logical Necessity'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
The logic of metaphysical necessity is S5 [Rumfitt]
     Full Idea: It is a widely accepted thesis that the logic of metaphysical necessity is S5.
     From: Ian Rumfitt (Logical Necessity [2010], §5)
     A reaction: Rumfitt goes on to defend this standard view (against Dummett's defence of S4). The point, I take it, is that one can only assert that something is 'true in all possible worlds' only when the worlds are all accessible to one another.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Soundness in argument varies with context, and may be achieved very informally indeed [Rumfitt]
     Full Idea: Our ordinary standards for deeming arguments to be sound vary greatly from context to context. Even the package tourist's syllogism ('It's Tuesday, so this is Belgium') may meet the operative standards for soundness.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
     A reaction: No doubt one could spell out the preconceptions of package tourist reasoning, and arrive at the logical form of the implication which is being offered.
There is a modal element in consequence, in assessing reasoning from suppositions [Rumfitt]
     Full Idea: There is a modal element in consequence, in its applicability to assessing reasoning from suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
We reject deductions by bad consequence, so logical consequence can't be deduction [Rumfitt]
     Full Idea: A rule is to be rejected if it enables us to deduce from some premisses a purported conclusion that does not follow from them in the broad sense. The idea that deductions answer to consequence is incomprehensible if consequence consists in deducibility.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Contradictions include 'This is red and not coloured', as well as the formal 'B and not-B' [Rumfitt]
     Full Idea: Overt contradictions include formal contradictions of form 'B and not B', but I also take them to include 'This is red all over and green all over' and 'This is red and not coloured'.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Geometrical axioms in logic are nowadays replaced by inference rules (which imply the logical truths) [Rumfitt]
     Full Idea: The geometrical style of formalization of logic is now little more than a quaint anachronism, largely because it fails to show logical truths for what they are: simply by-products of rules of inference that are applicable to suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §1)
     A reaction: This is the rejection of Russell-style axiom systems in favour of Gentzen-style natural deduction systems (starting from rules). Rumfitt quotes Dummett in support.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
10. Modality / A. Necessity / 3. Types of Necessity
A distinctive type of necessity is found in logical consequence [Rumfitt, by Hale/Hoffmann,A]
     Full Idea: Rumfitt argues that there is a distinctive notion of necessity implicated in the notion of logical consequence.
     From: report of Ian Rumfitt (Logical Necessity [2010]) by Bob Hale/ Aviv Hoffmann - Introduction to 'Modality' 2
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity is when 'necessarily A' implies 'not-A is contradictory' [Rumfitt]
     Full Idea: By the notion of 'logical necessity' I mean that there is a sense of 'necessary' for which 'It is necessary that A' implies and is implied by 'It is logically contradictory that not A'. ...From this, logical necessity is implicated in logical consequence.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
     A reaction: Rumfitt expresses a commitment to classical logic at this point. We will need to be quite sure what we mean by 'contradiction', which will need a clear notion of 'truth'....
A logically necessary statement need not be a priori, as it could be unknowable [Rumfitt]
     Full Idea: There is no reason to suppose that any statement that is logically necessary (in the present sense) is knowable a priori. ..If a statement is logically necessary, its negation will yield a contradiction, but that does not imply that someone could know it.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
     A reaction: This remark is aimed at Dorothy Edgington, who holds the opposite view. Rumfitt largely defends McFetridge's view (q.v.).
Narrow non-modal logical necessity may be metaphysical, but real logical necessity is not [Rumfitt]
     Full Idea: While Fine suggests defining a narrow notion of logical necessity in terms of metaphysical necessity by 'restriction' (to logical truths that can be defined in non-modal terms), this seems unpromising for broad logical necessity, which is modal.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
     A reaction: [compressed] He cites Kit Fine 2002. Rumfitt glosses the non-modal definitions as purely formal. The metaphysics lurks somewhere in the proof.
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
If a world is a fully determinate way things could have been, can anyone consider such a thing? [Rumfitt]
     Full Idea: A world is usually taken to be a fully determinate way that things could have been; but then one might seriously wonder whether anyone is capable of 'considering' such a thing at all.
     From: Ian Rumfitt (Logical Necessity [2010], §4)
     A reaction: This has always worried me. If I say 'maybe my coat is in the car', I would hate to think that I had to be contemplating some entire possible world (including all the implications of my coat not being on the hat stand).
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / k. Ethics from nature
Moral judgements need more than the relevant facts, if the same facts lead to 'x is good' and 'x is bad' [Foot]
     Full Idea: It is suggested that anyone who has considered all the facts which could bear on his moral position has ipso facto produced a 'well founded' moral judgement, ...How 'x is good' can be well founded when 'x is bad' is equally well founded is hard to see.
     From: Philippa Foot (Moral Arguments [1958], p.96)
     A reaction: This seems to be a warning to particularists, if they hope that moral judgements just emerge from the facts. It doesn't rule out physicalist naturalism about morality, if the attitudes we bring to the facts have arisen out of further facts.
22. Metaethics / B. Value / 1. Nature of Value / b. Fact and value
We can't affirm a duty without saying why it matters if it is not performed [Foot]
     Full Idea: I do not know what could be meant by saying it was someone's duty to do something unless there was an attempt to show why it mattered if this sort of thing was not done.
     From: Philippa Foot (Moral Arguments [1958], p.105)
     A reaction: The Kantian idea assumes that duty is an absolute, and yet each duty rests on a particular maxim which is going to be universalised. So why should that maxim be universalised, and not some other?
Whether someone is rude is judged by agreed criteria, so the facts dictate the value [Foot]
     Full Idea: Whether a man is speaking of behaviour as rude or not rude, he must use the same criteria as anyone else. ...We have here an example of a non-evaluative premise from which an evaluative conclusion can be deduced.
     From: Philippa Foot (Moral Arguments [1958], p.104)
     A reaction: We would now call 'rude' a 'thick' ethical concept (where 'good' is 'thin'). Her powerful point is, I take it, that evidence is always relevant to judgements of thick concepts, so there is no fact-value gap. 'Rude' has criteria, but 'good' may not.
Facts and values are connected if we cannot choose what counts as evidence of rightness [Foot]
     Full Idea: To show that facts and values are connected we must show that some things do and some things don't count in favour of a moral conclusion, and that no one can choose what counts as evidence for rightness or wrongness.
     From: Philippa Foot (Moral Arguments [1958], p.99)
     A reaction: But what sort of facts might do the job? I can only think of right functioning and health as facts which seem to imply value. Pleasure and misery don't quite get there.