Combining Texts

All the ideas for 'Thinking About Mathematics', 'Leibniz' and 'Summa totius logicae'

unexpand these ideas     |    start again     |     specify just one area for these texts


26 ideas

2. Reason / B. Laws of Thought / 3. Non-Contradiction
From an impossibility anything follows [William of Ockham]
     Full Idea: From an impossibility anything follows ('quod ex impossibili sequitur quodlibet').
     From: William of Ockham (Summa totius logicae [1323], III.c.xxxvi)
     A reaction: The hallmark of a true logician, I suspect, is that this opinion is really meaningful and important to them. They yearn to follow the logic wherever it leads. Common sense would seem to say that absolutely nothing follows from an impossibility.
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
A proposition is true if its subject and predicate stand for the same thing [William of Ockham]
     Full Idea: If in the proposition 'This is an angel' subject and predicate stand for the same thing, the proposition is true.
     From: William of Ockham (Summa totius logicae [1323], II.c.ii)
     A reaction: An interesting statement of what looks like a correspondence theory, employing the idea that both the subject and the predicate have a reference. I think Frege would say that 'x is an angel' is unsaturated, and so lacks reference.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Ockham had an early axiomatic account of truth [William of Ockham, by Halbach]
     Full Idea: Theories structurally very similar to axiomatic compositional theories of truth can be found in Ockham's 'Summa Logicae'.
     From: report of William of Ockham (Summa totius logicae [1323]) by Volker Halbach - Axiomatic Theories of Truth 3
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / G. Quantification / 1. Quantification
The word 'every' only signifies when added to a term such as 'man', referring to all men [William of Ockham]
     Full Idea: The syncategorematic word 'every' does not signify any fixed thing, but when added to 'man' it makes the term 'man' stand for all men actually.
     From: William of Ockham (Summa totius logicae [1323], I.c.iv)
     A reaction: Although quantifiers may have become a part of formal logic with Frege, their importance is seen from Aristotle onwards, and it is clearly a key part of William's understanding of logic.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Just as unity is not a property of a single thing, so numbers are not properties of many things [William of Ockham]
     Full Idea: Number is nothing but the actual numbered things themselves. Hence just as unity is not an accident added to the thing which is one, so number is not an accident of the things which are numbered.
     From: William of Ockham (Summa totius logicae [1323], I.c.xliv)
     A reaction: [William does not necessarily agree with this view] It strikes me as a key point here that any account of the numbers had better work for 'one', though 'zero' might be treated differently. Some people seem to think unity is a property of things.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
7. Existence / A. Nature of Existence / 3. Being / g. Particular being
The words 'thing' and 'to be' assert the same idea, as a noun and as a verb [William of Ockham]
     Full Idea: The words 'thing' and 'to be' (esse) signify one and the same thing, but the one in the manner of a noun and the other in the manner of a verb.
     From: William of Ockham (Summa totius logicae [1323], III,II,c,xxvii)
     A reaction: Well said - as you would expect from a thoroughgoing nominalist. I would have thought that this was the last word on the subject of Being, thus rendering any need for me to read Heidegger quite superfluous. Or am I missing something?
8. Modes of Existence / E. Nominalism / 1. Nominalism / b. Nominalism about universals
Universals are single things, and only universal in what they signify [William of Ockham]
     Full Idea: Every universal is one particular thing and it is not a universal except in its signification, in its signifying many thing.
     From: William of Ockham (Summa totius logicae [1323]), quoted by Claude Panaccio - Medieval Problem of Universals 'William'
     A reaction: Sounds as if William might have liked tropes. It seems to leave the problem unanswered (the 'ostrich' problem?). How are they able to signify in this universal way, if each thing is just distinct and particular?
9. Objects / D. Essence of Objects / 6. Essence as Unifier
If essence and existence were two things, one could exist without the other, which is impossible [William of Ockham]
     Full Idea: If essence and existence were two things, then no contradiction would be involved if God preserved the essence of a thing in the world without its existence, or vice versa, its existence without its essence; both of which are impossible.
     From: William of Ockham (Summa totius logicae [1323], III,II,c,xxvii)
     A reaction: Not that William is using the concept of a supreme mind as a tool in argument. His denial of essence as something separable is presumably his denial of the Aristotelian view of universals, as well as of the Platonic view.
10. Modality / B. Possibility / 1. Possibility
Early modern possibility is what occurs sometime; for Leibniz, it is what is not contradictory [Arthur,R]
     Full Idea: For Descartes, Hobbes and Spinoza, if a state of things is possible, it must occur at some time, whether past, present or future. For Leibniz possibility makes no reference to time; an individual is possible if its concept contains no contradiction.
     From: Richard T.W. Arthur (Leibniz [2014], 4 'Contingent')
     A reaction: It has always struck me as fallacious to say that anything that is possible must at some time occur. If '6' is possible on the die, what will constrain it to eventually come up when thrown? Mere non-contradiction doesn't imply possibility either.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
17. Mind and Body / A. Mind-Body Dualism / 4. Occasionalism
Occasionalism contradicts the Eucharist, which needs genuine changes of substance [Arthur,R]
     Full Idea: The Jesuits rejected occasionalism ... because it is incompatible with the Catholic interpretation of the Eucharist, which there is genuine change of substance of the bread into the substance of Christ (transubstantiation).
     From: Richard T.W. Arthur (Leibniz [2014], 5 'Substance')
     A reaction: Not sure I understand this, but I take it that the Eucharist needs a real relation across the substance-spirit boundary, and not just a co-ordination.
19. Language / D. Propositions / 4. Mental Propositions
Some concepts for propositions exist only in the mind, and in no language [William of Ockham]
     Full Idea: Conceptual terms and the propositions formed by them are those mental words which do not belong to any language; they remain only in the mind and cannot be uttered exteriorly, though signs subordinated to these can be exteriorly uttered.
     From: William of Ockham (Summa totius logicae [1323], I.c.i)
     A reaction: [He cites Augustine] A glimmer of the idea of Mentalese, and is probably an integral part of any commitment to propositions. Quine would hate it, but I like it. Logicians seem to dislike anything that cannot be articulated, but brains are like that.