Combining Texts

All the ideas for 'Thinking About Mathematics', 'Goodbye Growing Block' and 'De Legibus Naturae'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

2. Reason / A. Nature of Reason / 7. Status of Reason
If a decision is in accord with right reason, everyone can agree with it [Cumberland]
     Full Idea: No decision can be in accord with right reason unless all can agree on it.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.V.XLVI)
     A reaction: Personally I think anyone who disagrees with this should get out of philosophy (and into sociology, fantasy fiction, ironic game-playing, crime…). Of course 'can' agree is not the same as 'will' agree. You must have faith that good reasons are persuasive.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
     Full Idea: Rationalism is a long-standing school that can be characterized as an attempt to extend the perceived methodology of mathematics to all of knowledge.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.1)
     A reaction: Sometimes called 'Descartes's Dream', or the 'Enlightenment Project', the dream of proving everything. Within maths, Hilbert's Programme aimed for the same certainty. Idea 22 is the motto for the opposition to this approach.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / d. Biological ethics
Natural law is supplied to the human mind by reality and human nature [Cumberland]
     Full Idea: Some truths of natural law, concerning guides to moral good and evil, and duties not laid down by civil law and government, are necessarily supplied ot the human mind by the nature of things and of men.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.I.I)
     A reaction: I agree that some moral truths have the power of self-evidence. If you say they are built into the mind, we now ask what did the building, and evolution is the only answer, and hence we distance ourselves from the truths, seeing them as strategies.
22. Metaethics / B. Value / 1. Nature of Value / f. Ultimate value
If there are different ultimate goods, there will be conflicting good actions, which is impossible [Cumberland]
     Full Idea: If there be posited different ultimate ends, whose causes are opposed to each other, then there will be truly good actions likewise opposed to each other, which is impossible.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.V.XVI)
     A reaction: A very interesting argument for there being one good rather than many, and an argument which I don't recall in any surviving Greek text. A response might be to distinguish between what is 'right' and what is 'good'. See David Ross.
23. Ethics / E. Utilitarianism / 1. Utilitarianism
The happiness of individuals is linked to the happiness of everyone (which is individuals taken together) [Cumberland]
     Full Idea: The happiness of each person cannot be separated from the happiness of all, because the whole is no different from the parts taken together.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.I.VI)
     A reaction: Sounds suspiciously like the fallacy of composition (Idea 6219). An objection to utilitarianism is its assumption that a group of people have a 'total happiness' that is different from their individual states. Still, Cumberland is on to utilitarianism.
The happiness of all contains the happiness of each, and promotes it [Cumberland]
     Full Idea: The common happiness of all contains the greatest happiness for each, and most effectively promotes it. …There is no path leading anyone to his own happiness, other than the path which leads all to the common happiness.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.I.VI)
     A reaction: I take this as a revolutionary idea, which leads to utilitarianism. It is doing what seemed to the Greeks unthinkable, which is combining hedonism with altruism. There is no proof for it, but it is a wonderful clarion call for building a civil society.
25. Social Practice / D. Justice / 2. The Law / c. Natural law
Natural law is immutable truth giving moral truths and duties independent of society [Cumberland]
     Full Idea: Natural law is certain propositions of immutable truth, which guide voluntary actions about the choice of good and avoidance of evil, and which impose an obligation to act, even without regard to civil laws, and ignoring compacts of governments.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.I.I)
     A reaction: Not a popular view, but I am sympathetic. If you are in a foreign country and find a person lying in pain, there is a terrible moral deficiency in anyone who just ignores such a thing. No legislation can take away a person's right of self-defence.
27. Natural Reality / D. Time / 1. Nature of Time / f. Eternalism
Eternalism says all times are equally real, and future and past objects and properties are real [Merricks]
     Full Idea: Eternalism says all times are equally real. Objects existing at past times and objects existing at future times are just as real as objects existing at the present. Properties had at past and future times are as much properties as those at the present.
     From: Trenton Merricks (Goodbye Growing Block [2006], 1)
     A reaction: He adds that the present is therefore 'subjective', resulting from one's perspective. Why would eternalists reject their subjective experiences of time, unless they reject all their other subjective experiences as well?
27. Natural Reality / D. Time / 1. Nature of Time / g. Growing block
Growing block has a subjective present and a growing edge - but these could come apart [Merricks, by PG]
     Full Idea: Merricks argues that the growing block view says that we live in the subjective present, and that there is a growing edge of being, but he then suggests that these two could come apart, and it would make no difference, so the growing block is incoherent.
     From: report of Trenton Merricks (Goodbye Growing Block [2006], 4) by PG - Db (ideas)
     A reaction: [I think that is the nub of his argument. I couldn't find a concise summary in his words]