Combining Texts

All the ideas for 'Necessary Existents', 'On the Introduction of Transfinite Numbers' and 'Epistemic Operators'

unexpand these ideas     |    start again     |     specify just one area for these texts


7 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Von Neumann treated cardinals as a special sort of ordinal [Neumann, by Hart,WD]
     Full Idea: Von Neumann's decision was to start with the ordinals and to treat cardinals as a special sort of ordinal.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by William D. Hart - The Evolution of Logic 3
     A reaction: [see Hart 73-74 for an explication of this]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
A von Neumann ordinal is a transitive set with transitive elements [Neumann, by Badiou]
     Full Idea: In Von Neumann's definition an ordinal is a transitive set in which all of the elements are transitive.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Alain Badiou - Briefings on Existence 11
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
Von Neumann numbers are preferred, because they continue into the transfinite [Maddy on Neumann]
     Full Idea: Von Neumann's version of the natural numbers is in fact preferred because it carries over directly to the transfinite ordinals.
     From: comment on John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Penelope Maddy - Naturalism in Mathematics I.2 n9
For Von Neumann the successor of n is n U {n} (rather than {n}) [Neumann, by Maddy]
     Full Idea: For Von Neumann the successor of n is n U {n} (rather than Zermelo's successor, which is {n}).
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Penelope Maddy - Naturalism in Mathematics I.2 n8
Each Von Neumann ordinal number is the set of its predecessors [Neumann, by Lavine]
     Full Idea: Each Von Neumann ordinal number is the set of its predecessors. ...He had shown how to introduce ordinal numbers as sets, making it possible to use them without leaving the domain of sets.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Shaughan Lavine - Understanding the Infinite V.3
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / c. Knowledge closure
You have knowledge if you can rule out all the relevant alternatives to what you believe [Dretske, by DeRose]
     Full Idea: The 'Relevant Alternatives' theory of knowledge said the main ingredient that must be added to true belief to make knowledge is that one be in a position to rule out all the relevant alternatives to what one believes.
     From: report of Fred Dretske (Epistemic Operators [1970]) by Keith DeRose - Intro: Responding to Skepticism §6
     A reaction: Dretske and Nozick are associated with this strategy. There will obviously be a problem in defining 'relevant'. Otherwise it sounds quite close to Plato's suggestion that we need true belief with 'logos'.
19. Language / D. Propositions / 3. Concrete Propositions
Propositions (such as 'that dog is barking') only exist if their items exist [Williamson]
     Full Idea: A proposition about an item exists only if that item exists... how could something be the proposition that that dog is barking in circumstances in which that dog does not exist?
     From: Timothy Williamson (Necessary Existents [2002], p.240), quoted by Trenton Merricks - Propositions
     A reaction: This is a view of propositions I can't make sense of. If I'm under an illusion that there is a dog barking nearby, when there isn't one, can I not say 'that dog is barking'? If I haven't expressed a proposition, what have I done?